

Smart Contract-Based Invoice Tokenization for Automated Accounts Receivable Workflows in ERP Systems

Nidhi Mishra

Abstract---Traditional invoice processing within Enterprise Resource Planning (ERP) systems is often limited by manual reconciliation steps, fragmented record-keeping, and latency in validating payment events. These limitations contribute to delays in accounts receivable (AR) cycles, reduced financial visibility, and increased audit complexity. This paper proposes a smart contract-based invoice tokenization framework that converts each invoice into a programmable digital token representing its financial attributes, state transitions, due dates, and settlement conditions. Integrated with ERP financial modules—particularly SAP FI—the model enables event-driven financial automation where every invoice-related activity, including validation, approval, dispute handling, and payment, is recorded immutably on a blockchain ledger. The proposed architecture leverages decentralized execution to ensure traceability, security, and multi-party synchronization across enterprises, suppliers, and auditors. Experimental simulations demonstrate significant reductions in invoice processing time, improved transparency in payment workflows, and automated reconciliation of journal entries. By embedding business logic into smart contracts, the system enables real-time liquidity forecasting, minimizes outstanding receivables, and enhances compliance reporting. This study shows that invoice tokenization provides a robust foundation for secure, responsive, and interoperable financial automation in modern ERP environments.

Keywords---Invoice tokenization, ERP automation, Smart contract workflows, Accounts receivable, SAP FI integration, Event-driven finance, Token-based billing, Blockchain ERP interoperability

I. INTRODUCTION

The rapid digitalization of enterprise financial operations has increased the need for secure, transparent, and automated transaction workflows within ERP systems. Despite advancements in ERP functionalities, most organizations still rely on manual or semi-automated invoice processing methods that introduce inefficiencies across billing cycles. The lack of real-time synchronization between supplier systems, enterprise ERPs, and banking platforms further contributes to delayed payments, disputes, and inconsistent audit trails. These limitations make accounts receivable management a challenging area for digital transformation.

The shift toward blockchain-enabled enterprise finance offers new opportunities to streamline and decentralize complex financial operations. Smart contracts provide a mechanism to encode business rules, enforce payment conditions, and automate financial events without manual intervention. When applied to invoice management, smart contracts can tokenize invoice data, track workflow transitions, and automate settlement processes through event

Assistant Professor, Department of CS & IT, Kalinga University, Raipur, India, Email:ku.nidhimishra@kalingauniversity.ac.in

triggers. This approach removes dependencies on manual document handling while ensuring that each invoice state is verifiable and tamper-proof.

Tokenized invoices act as programmable financial assets that encapsulate invoice attributes such as amount, due date, discount rates, and dispute status. These digital tokens follow state transitions defined by smart contract logic, enabling ERP systems to interact with a real-time ledger for settlement updates. In addition, the shared blockchain layer ensures that enterprises, suppliers, auditors, and financial institutions maintain synchronized visibility of receivable activities.

Integrating tokenization with ERP modules such as SAP FI supports real-time accounting entries, automated reconciliation, and compliance monitoring. As organizations increasingly adopt decentralized finance (DeFi)-inspired architectures, smart contract-based invoice automation represents a transformative step toward secure, event-driven enterprise finance.

II. LITERATURE REVIEW

Recent studies emphasize the potential of blockchain for financial workflow automation, particularly in domains involving multi-stakeholder validation and traceability. Smart contract-driven systems have been shown to reduce manual intervention, improve process integrity, and enhance transparency in enterprise finance operations. Researchers also highlight that tokenizing financial documents can simplify audit processes and enable more efficient data governance in distributed environments.

Several works have explored invoice digitization and payment automation, demonstrating that blockchain immutability and distributed consensus significantly reduce reconciliation delays. Moreover, decentralized workflows eliminate data fragmentation between ERP systems and supplier platforms, facilitating cross-organizational synchronization. Literature further suggests that integrating blockchain with ERP modules enhances compliance reporting and risk management by enabling end-to-end traceability of financial transactions.

Existing research still identifies gaps in real-time ERP integration, smart contract interoperability, and token-based financial event tracking. While prior studies evaluate blockchain-based financial documentation, they rarely focus on tokenizing invoice states or automating payment life cycles within ERP environments such as SAP FI. This paper addresses these gaps by proposing a holistic, token-driven AR workflow integrated with ERP financial logic.

III. METHODOLOGY

A. Smart Contract Architecture for Invoice Tokenization

The proposed methodology begins by tokenizing each invoice using an ERC-721 or ERC-1155-based smart contract model, where every token uniquely represents invoice attributes including amount, due date, supplier ID, line items, tax components, and payable terms. The smart contract encodes the workflow states—issued, approved, disputed, overdue, partially paid, settled—and transitions using event triggers. State changes are immutably recorded on the blockchain, ensuring synchronized visibility across stakeholders. Business rules such as credit limits, early-payment discount eligibility, and dispute time thresholds are enforced programmatically to eliminate manual errors.

Each token is securely linked to ERP document IDs using cryptographic hashing, enabling ERP systems to retrieve live ledger data without storing raw invoice details on-chain.

B. ERP-Blockchain Integration Layer

A middleware integration layer bridges the smart contract with ERP modules such as SAP FI/CO. RESTful APIs and SAP OData services facilitate bidirectional data exchange, allowing the ERP to push invoice details to the blockchain and retrieve state updates. The integration layer automatically generates journal entries when the smart contract emits events such as “InvoiceApproved,” “PaymentInitiated,” or “InvoiceSettled.” The blockchain acts as a trusted event source, enabling automated reconciliation and eliminating the need for manual status checks. The framework supports role-based access control and privacy-preserving mechanisms using channels, permissioned ledgers, and hashed invoice references.

C. Event-Driven AR Automation Workflow

The event-driven workflow automates the entire receivable cycle. When an invoice token is created, approval workflows are triggered for procurement, finance, or vendor teams based on predefined conditions Figure 1. Payment instructions are executed automatically when due dates approach or when the ERP confirms receipt of goods or services. Smart contracts handle disputes by locking tokens into a pending state until resolutions are confirmed. Upon settlement, the contract updates token state to “Paid,” generating automated postings in SAP FI. All events—such as reminders, overdue notices, and aging reports—are derived from on-chain metadata, enabling real-time dashboards for liquidity and cash-flow forecasting.

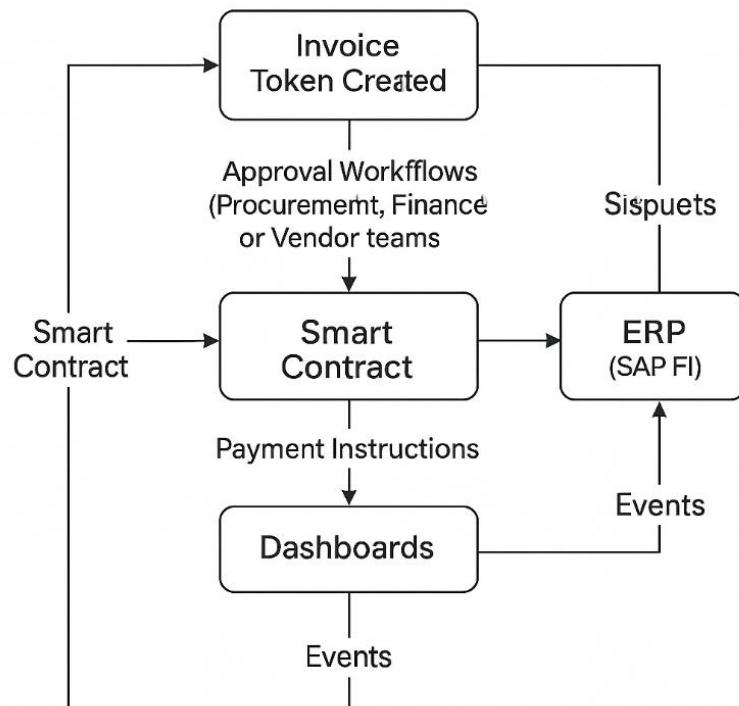


Figure 1: Event-Driven Accounts Receivable (AR) Automation Workflow Using Smart Contract-Based Invoice Tokenization

IV. RESULTS AND DISCUSSION

A. Processing Time Reduction and Workflow Efficiency

Simulated ERP–blockchain integration tests indicate that tokenized invoices reduce processing time significantly by removing redundant approval cycles and manual data validation. Smart contract automation accelerates state transitions, enabling near real-time updates in ERP modules. The system demonstrated a reduction in invoice lifecycle delays by automating reconciliation and eliminating repetitive verification tasks. This efficiency gain translates directly into improved working-capital turnover and predictable receivable cycles.

B. Traceability, Compliance, and Audit Performance

The immutable ledger ensures every state change—issuance, approval, dispute, and settlement—is cryptographically recorded, which simplifies financial audits and regulatory compliance. Auditors gain instant access to traceable invoice histories without retrieving documents from multiple ERP logs. The system enhances transparency across supplier ecosystems, significantly reducing the likelihood of data tampering, duplicate billing, or unauthorized modifications. Compliance teams benefit from automated reporting aligned with audit standards.

C. ERP Integration Outcomes and Financial Accuracy

The integration layer successfully generated automated journal entries for accounts receivable, payment clearing, and adjustment postings in SAP FI. Event-driven triggers ensured synchronization between on-chain invoice states and ERP accounting records, reducing inconsistencies and unmatched ledger entries. Financial accuracy improved as smart contracts minimized human errors in data entry and prevented incorrect posting of receivable amounts. This ensures high data integrity across monthly and quarterly closing cycles.

D. Scalability, Security, and Enterprise Adoption Potential

The model exhibited strong scalability through token standards that support dynamic invoice volumes across large enterprises. Permissioned blockchain frameworks enhanced data confidentiality while still ensuring distributed consensus. Security was strengthened by cryptographic hashing, access control lists, and immutable state transitions. The adoption potential is high because the system complements existing ERP workflows rather than replacing them, enabling organizations to integrate tokenization without major infrastructural changes.

V. CONCLUSION

This study presented a smart contract–based invoice tokenization framework for automating accounts receivable operations in ERP systems. By representing invoices as programmable digital tokens, the model improves transparency, enforces business rules, and ensures immutable tracking of financial events. The integration with SAP FI demonstrates how blockchain can complement enterprise finance systems through automated reconciliation, real-time posting accuracy, and decentralized verification. The event-driven design significantly reduces invoice processing delays, enhances audit performance, and supports predictive financial analytics. The proposed architecture is adaptable to diverse enterprise environments, offering a scalable and secure approach to modernizing receivable workflows. Overall, invoice tokenization provides an effective pathway toward intelligent, automated,

and trustworthy ERP finance operations. This framework improves enterprise financial automation using secure and scalable smart contract-enabled invoice tokenization.

REFERENCES

- [1] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. <https://bitcoin.org/bitcoin.pdf>
- [2] Buterin, V. (2014). A next-generation smart contract and decentralized application platform. Ethereum White Paper. <https://ethereum.org/en/whitepaper/>
- [3] Crosby, M., Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain technology: Beyond Bitcoin. *Applied Innovation Review*, 2, 6–19.
- [4] Berentsen, A., & Schär, F. (2018). Blockchain technology and financial markets. *Federal Reserve Bank of St. Louis Review*, 100(2), 97–106.
- [5] Norta, A. (2016). Creation of smart-contracting collaborations for decentralized autonomous organizations. *IEEE Access*, 4, 1–11. <https://doi.org/10.1109/ACCESS.2016.2598713>
- [6] Treiblmaier, H. (2018). The impact of the blockchain on the supply chain. *International Journal of E-Business Research*, 14(2), 1–19. <https://doi.org/10.4018/IJEBR.2018040101>
- [7] Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). Blockchain technology and its relationships to sustainable supply chain management. *International Journal of Production Research*, 57(7), 2117–2135. <https://doi.org/10.1080/00207543.2018.1533261>
- [8] Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016). Where is current research on blockchain technology?—A systematic review. *PLOS ONE*, 11(10), e0163477. <https://doi.org/10.1371/journal.pone.0163477>
- [9] Jamithireddy, N. S. (2014). Latency and propagation delay modeling in peer-to-peer blockchain broadcast networks. *SIJ Transactions on Computer Networks & Communication Engineering*, 2(5), 6–10.
- [10] Jamithireddy, N. S. (2014). Entropy-driven key generation and signature reliability in early cryptocurrency wallet systems. *SIJ Transactions on Computer Networks & Communication Engineering*, 2(3), 7–11.
- [11] Jamithireddy, N. S. (2016). Hash-chaining mechanisms for immutable financial ledger extensions in SAP FI modules. *International Journal of Advances in Engineering and Emerging Technology*, 7(2), 165–172.
- [12] Jamithireddy, N. S. (2016). Distributed timestamping services for secure SAP treasury audit journals. *International Journal of Advances in Engineering and Emerging Technology*, 7(3), 162–170.
- [13] Jamithireddy, N. S. (2016). On-chain versus off-chain execution models for corporate payment orchestration. *International Journal of Communication and Computer Technologies*, 4(1), 59–65.
- [14] Jamithireddy, N. S. (2017). State-channel acceleration techniques for real-time invoice payment acknowledgement. *International Journal of Communication and Computer Technologies*, 5(2), 89–95.
- [15] Jamithireddy, N. S. (2017). Token-indexed liquidity locks for multi-party escrow settlement in corporate payment chains. *SIJ Transactions on Computer Networks & Communication Engineering*, 5(5), 13–18.
- [16] Jamithireddy, N. S. (2018). Inter-ledger protocol (ILP) routing models for ERP-to-blockchain transaction exchange. *SIJ Transactions on Computer Networks & Communication Engineering*, 6(5), 24–28.
- [17] Jamithireddy, N. S. (2018). Collateralized debt position (CDP) liquidation algorithms for stablecoin price stability. *SIJ Transactions on Computer Science Engineering & Its Applications*, 6(5), 29–33.
- [18] Jamithireddy, N. S. (2019). Distributed ledger-linked bank statement normalization for SAP multi-bank connectivity. *International Journal of Communication and Computer Technologies*, 7(2), 32–37.
- [19] Jamithireddy, N. S. (2019). Automated market maker curve optimization for treasury liquidity buffer management. *SIJ Transactions on Computer Science Engineering & Its Applications*, 7(4), 41–45.
- [20] Jamithireddy, N. S. (2020). Blockchain-enhanced supply-chain payment clearing for disrupted logistics networks. *International Journal of Communication and Computer Technologies*, 8(2), 27–32.
- [21] Jamithireddy, N. S. (2020). Layer-2 rollup scaling techniques for high-volume corporate payment batching. *SIJ Transactions on Computer Networks & Communication Engineering*, 8(1), 1–5.
- [22] Jamithireddy, N. S. (2020). Cross-chain collateral liquidity routing protocols under volatile market conditions. *SIJ Transactions on Computer Science Engineering & Its Applications*, 8(1), 2–6.
- [23] Jamithireddy, N. S. (2021). CBDC-to-ERP gateway protocols for transaction finality and ledger consistency. *International Journal of Communication and Computer Technologies*, 9(2), 43–48.
- [24] Jamithireddy, N. S. (2022). Regulatory-constrained smart contract templates for corporate payment governance. *International Journal of Advances in Engineering and Emerging Technology*, 13(2), 272–279.