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 With the increasing adoption of advanced computing paradigm, like 
cloud computing, edge artificial intelligence (AI), industrial Internet of 
Things (IIoT), and 5G communication, the critical infrastructure systems 
have been exposed to very sophisticated cyber-attacks exponentially. 
Complex security issues arise with the use of such related environments 
as a result of the dynamic aspect of transmitting data, reacting to data in 
real-time, and heterogenous computing resources. Conventional 
perimeter based and signature driven cyber security solutions are not 
adequate to overcome zero day vulnerabilities, advanced persistent 
threats (APTs) and adaptive adversarial behavior. In this regard, this 
paper introduces an AI-based cyber defense framework specially 
designed to support advanced computing conditions and protection of 
critical infrastructure. The present framework would integrate a hybrid 
deep learning architecture which has a mixed Convolutional Neural 
Networks (CNN) to extract the spatial patterns and Long Short-Term 
Memory (LSTM) networks to model the temporal dependencies in 
network traffic to predict the correct anomalous behavior. As a 
complement to that, a reinforcement learning (RL) module learns and 
enforces policies to mitigate emerging threats adaptively depending on 
real-time threat intelligence and system states to reduce false alarms 
and response latency. The whole system is also designed to be run in 
the real-time manner, which qualifies it to be implemented within edge-
cloud ecosystems. The effectiveness of the given method was tested 
through the extensive experiments with publicly available cybersecurity 
dataset, such as CICIDS2017 and NSL-KDD to validate the competency 
of the specified approach. The hybrid CNNLSTM model recorded a high 
percentage of classification accuracy of 96.3 percent, with the 
standalone deep learning models and traditional systems in the 
intrusion detection field registering a slightly high false positive rate of 
2.7 percent, which is within the limit of 3 percent. As compared with 
previous policies, the RL-based policy agent was also seen to be 
converging fast and was able to respond efficiently to threats presented 
as part of the simulation on smart grid and cloud infrastructure. The 
findings point at the framework as a promising approach that offers the 
possibility to deliver proactive and agile, scalable cyber defense 
capacities to the current critical infrastructure systems that will result 
in a better security resilience, continuity of operations, and compliance 
against an ever-changing and continuously adapting cyber threat 
landscape. 
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1. INTRODUCTION 
This has been attributed to the widespread use of 
complex computing technologies that have 
transformed the use and maintenance of critical 
infrastructure systems, which had encompassed 
critical sectors such as energy networks, water 
treatment plants, health-care organizations, 
transport systems and industries automatization. 
The systems today employ interconnected digital 
elements, distributed edge computation 

infrastructure, cloud-based data accumulation, and 
in-time entrepreneurial channels supplied by 5G, 
industrial IoT (IIoT), and cyber-physical systems 
(CPS). Even though this digital transformation has 
presented unlimited efficiency, scalability, and 
automation, it has also increased the attack surface 
area of cyber adversaries to a considerable extent. 
The application of legacy infrastructure into the 
present-day world of computing has introduced 
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security blind spots that are taking root to the 
detriment of companies. 
Not only are the number of cyber threats against 
critical infrastructure on the increase, but they are 
becoming more sophisticated and tenacious in the 
nature of the threats. Advanced Persistent Threat 
(APT), zero day exploits, ransomware campaigns, 
and rogue employees and personnel present 
significant hazard to the confidentiality, integrity, 
and availability of mission critical systems. These 
are in most cases, sneaky, organized and could lead 

to domino failures in other sectors. Such an assault 
can take as an example a breach in the control 
system of a power grid because it would lead to 
disruption of the functioning of public services, the 
termination of business processes in the industry, 
and even national security. Although not obsolete, 
more traditional signature based intrusion 
detection systems (IDS) and the rule based 
firewalls are, in fact, passive, non-adaptive, and 
unable to perform under the changing threat 
intelligence or monitor new patterns of attacks. 

 

 
Figure 1. Cybersecurity Threat Landscape and AI Integration in Critical Infrastructure 

 
To address such impediments, the cyber security 
fraternity has been leaning more towards Artificial 
Intelligence (AI) to come up with proactive, 
intelligent and adaptive defensive systems. The AI 
methods of deep learning (DL) and reinforcement 
learning (RL) have proved particularly useful at 
automating some of the processes that are 
involved in detecting threat, learning normal 
behavior baselines, forecasting intrusion behavior 
trends, and intelligent reaction. Such deep learning 
architecture as Convolutional Neural Networks 
(CNN) and Recurrent Neural Networks (RNN) 
especially Long Short-Term Memory (LSTM) can 
be trained to learn distributions and temporal 
dependencies in the network data, logs, or sensor 
streams and, therefore, detect hidden anomalies 
and multi-stage attacks. In the meantime, 
reinforcement learning provides a framework of 
intelligent decision-making when the security 
rules may be updated dynamically in real-time 
according to the changing threat environment and 
situational conditions. 
Nonetheless, although the topic of AI-enhanced 
cybersecurity is especially popular nowadays, the 

current solutions in the bulk are too specific, do 
not provide the overall generality of approaches 
applied to heterogeneous systems, or are not built 
to work in the real-time adaptability environment 
in critical infrastructure. The development of a 
well-integrated, expandable, and interpretable AI-
based infrastructure that has the potential to work 
on edge-cloud design, proactively determine and 
activate threat containment actions without being 
dependent on excessive human interaction is 
urgently required. 
The present paper focuses on this problem by 
recommending an integrated framework of cyber 
defense that builds on high-fidelity anomaly 
detection based on a hybrid CNN-LSTM model and 
an adaptive threat handling agent based on a deep 
reinforcement learning (DRL) model. The system is 
maintained to be dynamic, resource-constrained 
and mission-critical. The validation results of the 
framework are obtained through benchmark 
cybersecurity data, and simulated deployment in 
cloud-native infrastructures and smart grid. Its 
findings prove that it has a higher level of 
detection accuracy, lower false positive rates, and 
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a timely response feature and that it has the 
potential to secure next-generation critical 
infrastructure systems. 
 
2. LITERATURE REVIEW 
The increasing sophistication of cyber threats and 
weaknesses of the traditional defense systems 
have led researchers to explore the use of artificial 
intelligence (AI) as the method to provide 
cybersecurity. Specifically, deep learning (DL) and 
reinforcement learning (RL) have been found 
useful in sharpening threat detection, automation 
of response behaviours, and the ability to respond 
to changing ways of attack attacks in real-time. In 
this section, the greatest contribution as per its 
relevance in the field of AI cyber defense is 
evaluated with a specific focus on whether it can 
be applied to the critical infrastructure areas and 
advanced computing scenarios. 
 
Deep Learning in Cybersecurity 
Recent developments in deep learning 
technologies, specifically uses of Convolutional 
Neural networks (CNNs) have demonstrated some 
success in extracting spatial patterns involving 
network traffic and system log information. Such 
examples of works as DeepIDS (2021) illustrate 
how CNNs can recognize intrusions with a high 
level of accuracy based on the packet headers and 
payload structure learning. Whereas this can work 
well in offline processing, in edge-computing 
applications, CNN-based solutions can be 
associated with high latency and computational 
requirements. On the same note, AutoEncoder-
based structures and the combination of such 
structures (such as AutoEncoder combined with 
Recurrent Neural Networks (RNNs) or Long Short-
Term Memory (LSTM) networks) can learn 
temporal dynamics, as well as identify anomalies 
that cut across time. Charles H. Wagner, Jae Woong 
Jun, Eric Jang (2023) AutoEncoder-IDS assembles 
AE and LSTM to enforce malware monitoring of 
industrial control systems. Its high sensitivity to 
noisy data and its dependency on clean-training 
data restrict its application in the real world since 
in real-world deployment, the training data is often 
unbalanced or unstructured. 

 
Reinforcement Learning in Cybersecurity 
Reinforcement Learning (RL) brings in a smart 
control algorithm in which agents are expected to 
use to figure out effective forms of protection 
when they take action in the environment. An 
example is that presented by RL-SecNet (2022) 
which uses Deep Q-Network (DQN) policy to 
impose dynamic access control decision in smart 
grid networks. This will make the system learn and 
make less delay in reacting to past incidents. RL 
models however generally have large exploration 
times to converge, and the use of RL models in 
safety-critical applications should be factored as 
possibly unstable learning and potentially 
unintended policy actions. 
 
Edge and Cloud Integration Gaps 
Deployments of AI models have demonstrated 
applications in one-off testbeds, but their 
application into distributed systems supporting 
real-time operations, edge-cloud architectures, is 
rare. The majority of the models are learned in 
centralized conditions and do not consider the 
limitations such as the variability of bandwidths, 
requests to be in real-time, or even the 
heterogeneity of devices. In addition, existing 
frameworks are not resistant to zero-day attacks 
or malicious inputs and tend not to justify their 
actions, which restricts their usage in compliance-
controlled areas such as healthcare and energy 
industries. 
 
Research Gap and Direction 
As was seen in the communities reviewed 
literature, it was possible to see that none of the 
models have so far reached the trifecta of (i) high 
detection accuracy, (ii) low response latency in 
edge environments, and (iii) adaptation to 
dynamic threat landscapes. This paper, therefore, 
holds a hybrid CNN-LSTM deep learning 
architecture with an adaptive policy agent built on 
reinforcement learning to fill this gap. The novel 
framework is specifically targeted to application in 
smart infrastructure and next generation 
computing context where security, performance 
and scalability are paramount. 

 
Table 1. Comparative Summary of Notable AI-Based Cybersecurity Models 

Model Technique Application Limitations 
DeepIDS (2021) CNN Intrusion Detection High latency in edge deployment 

RL-SecNet (2022) DQN-based 
RL 

Access Control 
Policy 

Slow convergence under high 
variation 

AutoEncoder-IDS 
(2023) 

AE + LSTM Malware Detection Sensitive to noisy or imbalanced 
inputs 

 
3. METHODOLOGY 
The envisioned cyber defense architecture driven 
by AI attempts to overcome the shortcomings of 

the conventional intrusion detection systems (IDS) 
by using deep learning to recognize the threat 
along with reinforcement learning to produce 
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versatile answers. The architecture is a modular 
pipeline with its steps being real-time data 
ingestion, feature learning, threat classification 
and adaptive response. 
 
3.1 System Architecture 
The suggested cyber defense framework based on 
AI can be characterized as a modular, scalable, and 
real-time adaptive capability, which qualifies it to 
be used with protecting various environments 
within critical infrastructure. The design consists 
of five highly integrated modules that play a 
certain role in the overall cybersecurity pipeline. 
All these elements will help in ingesting data in 
real-time, smart detection of threats, flexible 
implementation of policies, and explainable 
support of decisions. 
 
Data Collector 
The AI-Based cyber protection layer is based on 
the Data Collector module that, without ceasing 
operation, continuously collects raw security 
information of various heterogeneous sources. It 
gathers network traffic through PCAP tools and 
NetFlow on routers and switch, logs on systems 
both on servers and endpoints, telemetry on 
industrial control systems (e.g., SCADA, PLCs), and 
cloud-native security data on platforms used (e.g., 
AWS CloudTrail, Azure Sentinel). It also 
incorporates measurements on IIoT sensors and 
edge gateways. To manage these huge-scale 
streams lightweight agents, such as Filebeat and 
Zeek, are deployed and used with the help of 
messaging brokers, such as Apache Kafka or 
MQTT. Time-sensitive multiple levels of security 
data is delivered by this real-time and distributed 
data pipeline to the down-stream analysis modules 
in a timely manner. 
 
Preprocessing Engine 
Standardization and structuring of the raw data 
make the raw data ready to be used by the 
machine learning process, which is prepared via 
the Preprocessing Engine. To begin with, 
normalization of numerical attributes is adopted to 
remove the effects of scales. Then the metadata of 
the protocol protocols, e.g. IP addresses and ports, 
is coded through one-hot encoding or embeddings. 
It is then segmented into time-windows in order to 
maintain time aspects of crucial importance in 
defining the sequence modeling. It also carries out 
redundancy filtering in that it removes the 
duplicates, nulls as well as irrelevant headers. The 
output is clean and consistent input adapted to 

deep learning models so that threat detection is 
satisfactory and real-time inference successful. 
 
Hybrid AI Core 
CNN and LSTM are combined in the Hybrid AI Core 
and used to create a deep threat detection feature 
and a reinforcement learning agent is added as 
adaptive response. The CNN derives the spatial 
patterns on raw network data, e.g. abnormal usage 
of ports or protocol exceptions. The LSTM is 
involved in processing the features over time, in 
order to identify sequential attack patterns, like 
the multi-stage exploits or stealthy scans. The RL 
agent is fed with threat predictions and context of 
the system and decides on the best mitigation 
procedures (e.g. blocking traffic, alerting admins). 
Such learning of the RL agent can be realized by Q-
learning or DQN, where their reward function can 
be optimized to balance accuracy, latency, and 
false positives, and continuously updated to 
accommodate new threats. 
 
Decision Layer 
The Decision Layer has the role of translating the 
outputs of the AI core in order to activate the 
correct responses. It tests the threat scores, system 
context and operations parameters to categorize 
events as genuine or malicious. In this regard, it 
may raise security alerts, block IP addresses, or 
recalculate firewalls by using SDN. It also backs 
adaptive thresholding to minimize false alarms. 
This layer will provide proportional response to 
risks of the system appropriate balancing of 
security and availability priorities to the system 
particularly essential in such habitat as the critical 
infrastructure or smart grid. 
 
Monitoring Dashboard and Explainability 
Module 
In order to facilitate the transparency of the 
operations, the system will contain the real-time 
interface (dashboard) developed using tools such 
as Grafana and Kibana. It presents threat warnings, 
system activity and traffic trends to a user-friendly 
dashboard. Some might also be interested in 
interpretability of model decisions, which is also 
integrated with SHAP explainability, as showing 
which features (e.g., ports, protocols) contributed 
most to an alert. It does not only simplify the 
process of building trust and auditing to security 
analysts but also guarantees adherence to such 
requirements as NIST, ISO 27001, and GDPR. On 
the whole, the module provides human-in-the-loop 
analysis and allows the refinement of the models 
based on feedback. 
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Figure 2. Layered System Architecture of the AI-Powered Cyber Defense Framework for Real-Time 

Threat Detection and Response 
 

3.2 CNN-LSTM Based Anomaly Detection 
To effectively model the spatio-temporal patterns 
in cybersecurity data: 
 
Convolutional Neural Network (CNN) 
The spatial and hierarchical feature representation 
extraction of raw cybersecurity data, e.g., packet 
header fields, flow metadata, and payload 
embedding embeddings will be extracted by the 
Convolutional Neural Network (CNN) component 
of the hybrid model. This data is often stored in an 
organized form in the form of multi-dimensional 
input tensors and includes some important 
indicators source and destination IP addresses, 
port numbers, protocol types, packet lengths, and 
flag settings. The CNN uses a sequence of trainable 
convolutional filters upon such inputs, which 
allows discerning localized patterns and fine 
correlations in the data. CNN sequentially 
constructs increasingly abstracted feature maps by 
convolutions (and non-linear activations (e.g., 
ReLU)) and pooling, as such form a topographical 
representational structure highlighting low-level 
artifacts of malicious activity: e.g. irregular port 
usage, unusual protocol flags, or anomalous bytes 
sequences which are commonly among the first 
indicators of malicious activity. Through the use of 
shared weights and spatial locality, CNNs in 

essence are very effective at learning invariant 
properties of cyber threat such as port scan, SYN 
flooding, or injection payload, and how it occurs 
and appears irrespective of where and how it 
originated within the traffic stream. The generated 
high-level feature vectors are fed into LSTM 
module to give high-dimensional and low-
dimensional spatial information of the network 
behavior to beToolbar studied further in time. 
 
Long Short-Term Memory (LSTM) 
The Long Short-Term Memory (LSTM) model acts 
as the tiny computational engine in the CNN-LSTM 
system architecture, which was dedicated to seize 
the long-range connection and the time-dependent 
pattern in time series that are generated by 
network traffic. Once the CNN obtains spatial 
features of individual packets or flows, LSTM is fed 
with the same results as ordered sequences and is 
able to learn the temporal dynamics of the events. 
In contrast with the traditional RNNs, LSTMs have 
memory cells and gates (input, forget, and output 
gates) that control information flow and enable the 
model to remember the important context and 
forget the noise signal and the redundant 
information. LSTM is therefore especially useful at 
detecting slower forms of cyberattacks which 
develop over time, or are staged, like low-rate port 
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scans that occur across multiple time windows, 
time-lagged malware payloads which masquerade 
normal behavior during malicious bursts, or 
multistaged exploits with a recon followed by an 
exploit. This behavioral anomaly temporal 
awareness can be established by fitting lagged, 
nonlinear models of the sort possible by the LSTM 
and which may not be easily identifiable by batch 
packet only analysis. As a result, the LSTM 
provides an output that contains a time-sensitive 
threat representation that is essential to ensuring 
strong and context-specific intrusion detection 
within real-time and non-static network setting. 
 
Classification Output  
The Classification Output stage is the top level of 

the CNN-LSTM, as all the other layers are decision-

making layers and in this level, all temporal 

embeddings generated in the LSTM network are 

relayed through one or more fully connected 

(dense) layers and then fed into a softmax 

classifier. This classifier will decode the values 

produced by the algorithm in a normalized 

probability distribution of a set of threat types that 

were set beforehand; a few of them are as follows: 

Normal, DDoS, Brute Force, Botnet, Malware 

injection, and others. Softmax can guarantee every 

class probability lying between 0 and 1, and 

summing up all the classes to 1, which gives the 

model a facility to rank its predictions in order of 

confidence. In training, the network is trained to 

optimize a categorical cross-entropy loss, that is, a 

loss that penalizes the distance between the 

modeled probability distribution and the correct 

one-hot encoded targets. This loss is suitable to 

conduct multi-class classification and the model 

could distinguish between multiple types of 

threats effectively. This optimization step uses the 

Adam optimizer, an adaptive gradient-based 

algorithm, as it combines well-known benefits of 

both AdaGrad and RMSProp to allow faster 

convergence speed, and robustness in presence of 

sparse gradients. To guard against overfitting and 

promote generalizing on unseen data more 

generally, the dense layers are regularized with 

dropout training, where some fraction of the 

neurons gets randomly disabled throughout the 

training and prevents both the model to over-

depend on certain feature-paths. This delicately 

designed output layer does both, it facilitates the 

accuracy of threat classification and is capable of 

facilitating confidence-driven decisions during 

real-time cybersecurity activities. 

 

 
Figure 3. CNN-LSTM Hybrid Architecture for Spatio-Temporal Anomaly Detection in Network Traffic 

 
3.3 Reinforcement Learning for Adaptive 
Threat Response 
Reinforcement Learning (RL) module is the most 
central module in implementing independent and 
context-sensitive defense of the AI-enforced cyber 
shield. This module does not have any set policies 
in place unlike in a static rule-based system but 
enables the system to dynamically engage with the 
environment and learn how to respond in the best 
way possible. The RL agent is based on the 

cybersecurity environment as Markov Decision 
Process (MDP), with the system observing a state, 
making an action, awarding a reward, and moving 
to a new state. This feedback process enables the 
agent to continuously improve on its behavior in 
order to achieve maximum long-term performance 
of the defense. 
 State Space: The RL agent's perception of the 

current environment is represented as a 
multi-dimensional state vector. This includes 
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features such as the type of detected threat 
(e.g., DDoS, malware), the model’s confidence 
score in its classification, system-level 
metadata (e.g., CPU load, host vulnerability 
level), time of detection, and network 
behavior indicators. These inputs provide the 
context required for situationally appropriate 
decision-making. 

 Action Space: The agent can choose from a 
set of predefined cyber-defense actions, 
which may include: 
 Sending an alert to the system 

administrator 
 Dropping suspicious network packets 
 Isolating compromised hosts from the 

network 
 Updating firewall or access control 

policies 
 Logging the incident for further analysis 

each action has a corresponding cost and 
benefit, influencing how and when it 
should be executed based on the 
scenario. 

 Reward Function: The learning process is 
guided by a custom reward function designed 
to promote effective threat mitigation. The 
goal is to maximize true positives (correct 
threat responses) while minimizing false 
positives (false alarms) and latency (delayed 
response). The reward function is 
mathematically expressed as: 

 
R− α. TP − β. FP − γ. LATENCY 

Where: 
 𝐓𝐏: Number of true positive 

responses 

 𝐅𝐏: Number of false positives 
 𝐋𝐀𝐓𝐄𝐍𝐂𝐘: Response time in 

milliseconds 
 𝛂,𝛃,𝛄: Tunable parameters that 

control the importance of 
accuracy and responsiveness 

 Learning Algorithm: The Deep Q-Network 
(DQN) is the learning algorithm that is 
implemented. DQN uses a deep neural 
network as approximation of the Q-value 
function Q(s,a), with s denoting the state and 
a- the action. The Q-values are the averaging 
expected sum of cumulative reward after 
taking the action a in the state s and then 
pursuing the optimal policy. The experience 
replay and the temporal-difference training 
updates the network, where the agent can 
generalize to new situations and learn stable 
policies in noisy environments or novel 
environments that the agent has not been 
trained to observe. 

With time, the RL agent learns to approach an 
optimal policy 2pi that determines what action to 
perform in what circumstance that would help to 
reduce the effects of cyber threats. More 
importantly, this module enables the framework to 
automatically respond to novel attack patterns, 
changing adversarial behaviors, and dynamically 
changing network environments without the need 
of manually changing rules and human 
involvement. This is continuous learning ability, 
which renders the system intelligent and resilient, 
a requirement in MCI environments that need real-
time defense. 

 

 
Figure 4. Reinforcement Learning-Based Adaptive Threat Response Framework 
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4. Experimental Setup 
To check the efficiency and real-life practicality of 
the suggested AI-based cyber defense system, we 
performed numerous tests on two benchmark 
cyber security data, CICIDS2017 and NSL-KDD. The 
CICIDS2017 collection is also a new high-fidelity 
dataset recording the traffic behaviours in a 
realistic way, that is, normal and malicious flows 
produced over a network testbed. It contains 
DDoS, brute-force password attacks, intrusion, 
botnets and web-based attacks, hence most 
suitable to train and test anomaly detection 
models in current threats environment. 

Differently, a more delicate version of the 
traditional KDD dataset, namely NSL-KDD, 
presents a normal test bed against which the 
intrusion detection systems can be tested. It has a 
balanced composition of normal traffic and other 
sorts of attacks (e.g., Probe, DoS, U2R, R2L) not 
only narrowing down the problem of redundancy 
and imbalance as in its predecessor. These two 
datasets were selected to provide a comprehensive 
coverage in terms of the scope of the validation, 
such as CICIDS2017 as a modern, high volume 
traffic dataset and NSL-KDD as an older, 
benchmarking dataset also to compare models. 

 
  Table 2. Overview and Comparison of CICIDS2017 and NSL-KDD Datasets 

Dataset Year Traffic Type Attack Types Realism Volume 

CICIDS2017 2017 Realistic traffic DDoS, Infiltration, etc. High ~80 GB 

NSL-KDD 2009 Synthetic sessions DoS, U2R, R2L, Probe Medium Balanced 

 
The python code was evaluated using an extensive 
list of evaluation measures that evaluate the CNN-
LSTM based Anomaly detector and the 
reinforcement learning based response module. In 
order to measure the accuracy of the classification, 
good detection rates, we calculated Accuracy, 
Precision, Recall, and F1-Score, which give an 
indication of correctness of the given model, its 
susceptibility to attacks, and robustness of the 
false positives and false negatives classification. 
Moreover, False Positive Rate (FPR) caused close 
attention, since high FPR may end up overloading 
security teams with unusable false alerts, making 
them lose confidence in automated systems. 

Detection Latency measured as the duration 
between occurrence of anomalies and the 
consequent detection response was used to 
determine the usefulness of the system in real-
time applications in edge and cloud systems. In the 
case of reinforcement learning agent, we examined 
the Policy Convergence Rate, which measures the 
degree to which the RL model converges on an 
effective threat mitigation policy. This multi-metric 
testing will be designed to ascertain that the 
suggested system should be not only precise and 
resilient but also reactive, extending, and 
adaptable operating in a volatile operation 
condition. 

 
Table 3. Evaluation Metrics Used for Model Performance Assessment 

Metric Description 

Accuracy Overall correctness of classification 

Precision TP / (TP + FP): Attack identification accuracy 

Recall TP / (TP + FN): Ability to detect all attacks 

F1-Score Harmonic mean of Precision and Recall 

False Positive Rate Incorrect alarms as a percentage of total normal instances 

Detection Latency Average time (ms) to flag and respond to threats 

Convergence Rate Time taken for RL policy to stabilize in training 

 
5. RESULTS AND DISCUSSION 
The experiments confirm the effectiveness of the 
suggested hybrid computer security system using 
AI compared to the control ones: alone-cNN-LSTM 
designs and traditional intrusion detection 
facilities (IDS). The combination of CNN-LSTM + RL 
model got an accuracy of 96.3th that is higher than 
the standalone CNN-LSTM model that got an 
accuracy of 93.4%. Also, the hybrid model 
exhibited a 4 percentage F1-Score increase, going 
from 0.91 to 0.95, which is more well-balanced 
regarding precision and recall. Finally and most 

importantly, the False Positive Rate (FPR) almost 
halved, going down to 1.7 percent, compared to 3.2 
percent in the baseline model, which is a crucial 
improvement as far as avoiding alert fatigue and 
inspiring belief in automated threat detection is 
concerned. More than that, the mean detection 
latency improved considerably, and it was lower 
by 22 ms to 13 ms, which shows the framework is 
now more suitable in real-time settings, where the 
quick response to possible threats has to be taken 
as priority to prevent the aftermath of a speedy 
cyber-attack. 
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Figure 5. Performance Comparison of CNN-LSTM Only vs. Hybrid Model 

 
Practical deployment A simulated smart grid 
testbed based on Mininet was used to validate the 
framework against which it recorded individual 
notification and mitigation latencies consistently 
lower than 15 milliseconds. With this level of low-
latency performance that is also associated with 
high detection accuracy, many companies can find 
value in developing mission-critical applications in 
the form of power distribution networks, funding 
smart city infrastructure, and industrial control 
systems, where a great deal of safety depends on 
the ability of the model to perform well. The 
hybrid design also proved that it was highly 
resilient and capable of generalization in 

simulations of zero-day attacks because it was able 
to detect successfully previously unknown threats, 
a scenario that the traditional IDS platforms like 
Snort or Suricata have not been doing reliably. 
These findings confirm that a deep spatio-
temporal learning with adaptive policy 
optimization through reinforcement learning 
amounts to a more intuitive, context-sensible and 
self-improvising defense process. Easy converging, 
error dominated and self-controlling learning 
capabilities also qualify the model as a highly 
efficient and scalable model in securing complex 
computing systems as well as infrastructures. 

 
Table 4. Comparative Performance Metrics of Baseline CNN-LSTM and Proposed Hybrid AI-Powered 

Cyber Defense Model 
Metric CNN-LSTM Only Hybrid CNN-LSTM + RL 
Accuracy (%) 93.4 96.3 
F1-Score 0.91 0.95 
False Positive Rate (%) 3.2 1.7 
Avg. Detection Latency (ms) 22 13 

 
6. CONCLUSION 
Finally, the current paper outlines an all-inclusive 
and smart AI-based cyber defense paradigm that 
supports the security of progressive computing 
environments and essential infrastructure 
systems. This is because the proposed model, 
which combines a hybrid CNN-LSTM network 
trained to perform accurate spatio-temporal 
anomaly detection with a reinforcement learning-
based agent to respond to threats in real-time and 
adaptively, would be proving enhanced 
performance in terms of detection accurateness, 
false positive rate and mitigation delay. The 
modular structure of the system aids real-time 
decision-making, dynamic policy checking, and 
explainable feedback based on integrated SHAP-
based monitoring, and meets the requirements of 

being used in critical areas like smart grids, 
industrial automation, and healthcare systems. The 
model is robust and responsive in known, as well 
as zero-day attacks, verified through experimental 
results on CICIDS2017 and NSL-KDD datasets, and 
applied on simulated smart grid scenario. In 
addition, it has a reinforcement learning aspect, 
which makes the system automatically learn and 
adapt better defense strategies as time goes by, 
which means that the framework does not require 
human reconfiguration. To overall conclusion, in 
the forefront the next advancements are expected 
to emphasize the expansion of the framework to 
federated learning to incorporate privacy-
preserving collaborative detection, integration of 
explainable AI to enhance transparency threat 
attribution, realization of hardware acceleration to 
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guarantee ultra-low latency operation on edge 
computing platforms, and the foundation of 
resilient, scalable, and intelligent cybersecurity on 
distributed infrastructure systems. 
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