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With the increasing adoption of advanced computing paradigm, like
cloud computing, edge artificial intelligence (AI), industrial Internet of
Things (IIoT), and 5G communication, the critical infrastructure systems
have been exposed to very sophisticated cyber-attacks exponentially.
Complex security issues arise with the use of such related environments
as a result of the dynamic aspect of transmitting data, reacting to data in
real-time, and heterogenous computing resources. Conventional
perimeter based and signature driven cyber security solutions are not
adequate to overcome zero day vulnerabilities, advanced persistent
threats (APTs) and adaptive adversarial behavior. In this regard, this
paper introduces an Al-based cyber defense framework specially
designed to support advanced computing conditions and protection of
critical infrastructure. The present framework would integrate a hybrid
deep learning architecture which has a mixed Convolutional Neural
Networks (CNN) to extract the spatial patterns and Long Short-Term
Memory (LSTM) networks to model the temporal dependencies in
network traffic to predict the correct anomalous behavior. As a
complement to that, a reinforcement learning (RL) module learns and
enforces policies to mitigate emerging threats adaptively depending on
real-time threat intelligence and system states to reduce false alarms
and response latency. The whole system is also designed to be run in
the real-time manner, which qualifies it to be implemented within edge-
cloud ecosystems. The effectiveness of the given method was tested
through the extensive experiments with publicly available cybersecurity
dataset, such as CICIDS2017 and NSL-KDD to validate the competency
of the specified approach. The hybrid CNNLSTM model recorded a high
percentage of classification accuracy of 96.3 percent, with the
standalone deep learning models and traditional systems in the
intrusion detection field registering a slightly high false positive rate of
2.7 percent, which is within the limit of 3 percent. As compared with
previous policies, the RL-based policy agent was also seen to be
converging fast and was able to respond efficiently to threats presented
as part of the simulation on smart grid and cloud infrastructure. The
findings point at the framework as a promising approach that offers the
possibility to deliver proactive and agile, scalable cyber defense
capacities to the current critical infrastructure systems that will result
in a better security resilience, continuity of operations, and compliance
against an ever-changing and continuously adapting cyber threat
landscape.

1. INTRODUCTION

infrastructure, cloud-based data accumulation, and

This has been attributed to the widespread use of
complex computing technologies that have
transformed the use and maintenance of critical
infrastructure systems, which had encompassed
critical sectors such as energy networks, water
treatment plants, health-care organizations,
transport systems and industries automatization.
The systems today employ interconnected digital
elements, distributed edge computation

in-time entrepreneurial channels supplied by 5G,
industrial IoT (IloT), and cyber-physical systems
(CPS). Even though this digital transformation has
presented unlimited efficiency, scalability, and
automation, it has also increased the attack surface
area of cyber adversaries to a considerable extent.
The application of legacy infrastructure into the
present-day world of computing has introduced
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security blind spots that are taking root to the
detriment of companies.

Not only are the number of cyber threats against
critical infrastructure on the increase, but they are
becoming more sophisticated and tenacious in the
nature of the threats. Advanced Persistent Threat
(APT), zero day exploits, ransomware campaigns,
and rogue employees and personnel present
significant hazard to the confidentiality, integrity,
and availability of mission critical systems. These
are in most cases, sneaky, organized and could lead

to domino failures in other sectors. Such an assault
can take as an example a breach in the control
system of a power grid because it would lead to
disruption of the functioning of public services, the
termination of business processes in the industry,
and even national security. Although not obsolete,
more traditional signature based intrusion
detection systems (IDS) and the rule based
firewalls are, in fact, passive, non-adaptive, and
unable to perform under the changing threat
intelligence or monitor new patterns of attacks.
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Figure 1. Cybersecurity Threat Landscape and Al Integration in Critical Infrastructure

To address such impediments, the cyber security
fraternity has been leaning more towards Artificial
Intelligence (AI) to come up with proactive,
intelligent and adaptive defensive systems. The Al
methods of deep learning (DL) and reinforcement
learning (RL) have proved particularly useful at
automating some of the processes that are
involved in detecting threat, learning normal
behavior baselines, forecasting intrusion behavior
trends, and intelligent reaction. Such deep learning
architecture as Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN)
especially Long Short-Term Memory (LSTM) can
be trained to learn distributions and temporal
dependencies in the network data, logs, or sensor
streams and, therefore, detect hidden anomalies
and multi-stage attacks. In the meantime,
reinforcement learning provides a framework of
intelligent decision-making when the security
rules may be updated dynamically in real-time
according to the changing threat environment and
situational conditions.

Nonetheless, although the topic of Al-enhanced
cybersecurity is especially popular nowadays, the

current solutions in the bulk are too specific, do
not provide the overall generality of approaches
applied to heterogeneous systems, or are not built
to work in the real-time adaptability environment
in critical infrastructure. The development of a
well-integrated, expandable, and interpretable Al-
based infrastructure that has the potential to work
on edge-cloud design, proactively determine and
activate threat containment actions without being
dependent on excessive human interaction is
urgently required.

The present paper focuses on this problem by
recommending an integrated framework of cyber
defense that builds on high-fidelity anomaly
detection based on a hybrid CNN-LSTM model and
an adaptive threat handling agent based on a deep
reinforcement learning (DRL) model. The system is
maintained to be dynamic, resource-constrained
and mission-critical. The validation results of the
framework are obtained through benchmark
cybersecurity data, and simulated deployment in
cloud-native infrastructures and smart grid. Its
findings prove that it has a higher level of
detection accuracy, lower false positive rates, and
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a timely response feature and that it has the
potential to secure next-generation critical
infrastructure systems.

2. LITERATURE REVIEW

The increasing sophistication of cyber threats and
weaknesses of the traditional defense systems
have led researchers to explore the use of artificial
intelligence (AI) as the method to provide
cybersecurity. Specifically, deep learning (DL) and
reinforcement learning (RL) have been found
useful in sharpening threat detection, automation
of response behaviours, and the ability to respond
to changing ways of attack attacks in real-time. In
this section, the greatest contribution as per its
relevance in the field of Al cyber defense is
evaluated with a specific focus on whether it can
be applied to the critical infrastructure areas and
advanced computing scenarios.

Deep Learning in Cybersecurity

Recent developments in deep learning
technologies, specifically uses of Convolutional
Neural networks (CNNs) have demonstrated some
success in extracting spatial patterns involving
network traffic and system log information. Such
examples of works as DeepIDS (2021) illustrate
how CNNs can recognize intrusions with a high
level of accuracy based on the packet headers and
payload structure learning. Whereas this can work
well in offline processing, in edge-computing
applications, CNN-based solutions can be
associated with high latency and computational
requirements. On the same note, AutoEncoder-
based structures and the combination of such
structures (such as AutoEncoder combined with
Recurrent Neural Networks (RNNs) or Long Short-
Term Memory (LSTM) networks) can learn
temporal dynamics, as well as identify anomalies
that cut across time. Charles H. Wagner, Jae Woong
Jun, Eric Jang (2023) AutoEncoder-IDS assembles
AE and LSTM to enforce malware monitoring of
industrial control systems. Its high sensitivity to
noisy data and its dependency on clean-training
data restrict its application in the real world since
in real-world deployment, the training data is often
unbalanced or unstructured.

Reinforcement Learning in Cybersecurity
Reinforcement Learning (RL) brings in a smart
control algorithm in which agents are expected to
use to figure out effective forms of protection
when they take action in the environment. An
example is that presented by RL-SecNet (2022)
which uses Deep Q-Network (DQN) policy to
impose dynamic access control decision in smart
grid networks. This will make the system learn and
make less delay in reacting to past incidents. RL
models however generally have large exploration
times to converge, and the use of RL models in
safety-critical applications should be factored as
possibly unstable learning and potentially
unintended policy actions.

Edge and Cloud Integration Gaps

Deployments of Al models have demonstrated
applications in one-off testbeds, but their
application into distributed systems supporting
real-time operations, edge-cloud architectures, is
rare. The majority of the models are learned in
centralized conditions and do not consider the
limitations such as the variability of bandwidths,
requests to be in real-time, or even the
heterogeneity of devices. In addition, existing
frameworks are not resistant to zero-day attacks
or malicious inputs and tend not to justify their
actions, which restricts their usage in compliance-
controlled areas such as healthcare and energy
industries.

Research Gap and Direction

As was seen in the communities reviewed
literature, it was possible to see that none of the
models have so far reached the trifecta of (i) high
detection accuracy, (ii) low response latency in
edge environments, and (iii) adaptation to
dynamic threat landscapes. This paper, therefore,
holds a hybrid CNN-LSTM deep learning
architecture with an adaptive policy agent built on
reinforcement learning to fill this gap. The novel
framework is specifically targeted to application in
smart infrastructure and next generation
computing context where security, performance
and scalability are paramount.

Table 1. Comparative Summary of Notable Al-Based Cybersecurity Models

Model Technique Application Limitations

DeeplIDS (2021) CNN Intrusion Detection | High latency in edge deployment

RL-SecNet (2022) DQN-based Access Control | Slow convergence under high
RL Policy variation

AutoEncoder-IDS AE + LSTM Malware Detection | Sensitive to noisy or imbalanced

(2023) inputs

3. METHODOLOGY
The envisioned cyber defense architecture driven
by Al attempts to overcome the shortcomings of

the conventional intrusion detection systems (IDS)
by using deep learning to recognize the threat
along with reinforcement learning to produce
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versatile answers. The architecture is a modular
pipeline with its steps being real-time data
ingestion, feature learning, threat classification
and adaptive response.

3.1 System Architecture

The suggested cyber defense framework based on
Al can be characterized as a modular, scalable, and
real-time adaptive capability, which qualifies it to
be used with protecting various environments
within critical infrastructure. The design consists
of five highly integrated modules that play a
certain role in the overall cybersecurity pipeline.
All these elements will help in ingesting data in
real-time, smart detection of threats, flexible
implementation of policies, and explainable
support of decisions.

Data Collector

The Al-Based cyber protection layer is based on
the Data Collector module that, without ceasing
operation, continuously collects raw security
information of various heterogeneous sources. It
gathers network traffic through PCAP tools and
NetFlow on routers and switch, logs on systems
both on servers and endpoints, telemetry on
industrial control systems (e.g., SCADA, PLCs), and
cloud-native security data on platforms used (e.g.,
AWS CloudTrail, Azure Sentinel). It also
incorporates measurements on IloT sensors and
edge gateways. To manage these huge-scale
streams lightweight agents, such as Filebeat and
Zeek, are deployed and used with the help of
messaging brokers, such as Apache Kafka or
MQTT. Time-sensitive multiple levels of security
data is delivered by this real-time and distributed
data pipeline to the down-stream analysis modules
in a timely manner.

Preprocessing Engine

Standardization and structuring of the raw data
make the raw data ready to be used by the
machine learning process, which is prepared via
the Preprocessing Engine. To begin with,
normalization of numerical attributes is adopted to
remove the effects of scales. Then the metadata of
the protocol protocols, e.g. IP addresses and ports,
is coded through one-hot encoding or embeddings.
It is then segmented into time-windows in order to
maintain time aspects of crucial importance in
defining the sequence modeling. It also carries out
redundancy filtering in that it removes the
duplicates, nulls as well as irrelevant headers. The
output is clean and consistent input adapted to

deep learning models so that threat detection is
satisfactory and real-time inference successful.

Hybrid Al Core

CNN and LSTM are combined in the Hybrid Al Core
and used to create a deep threat detection feature
and a reinforcement learning agent is added as
adaptive response. The CNN derives the spatial
patterns on raw network data, e.g. abnormal usage
of ports or protocol exceptions. The LSTM is
involved in processing the features over time, in
order to identify sequential attack patterns, like
the multi-stage exploits or stealthy scans. The RL
agent is fed with threat predictions and context of
the system and decides on the best mitigation
procedures (e.g. blocking traffic, alerting admins).
Such learning of the RL agent can be realized by Q-
learning or DQN, where their reward function can
be optimized to balance accuracy, latency, and
false positives, and continuously updated to
accommodate new threats.

Decision Layer

The Decision Layer has the role of translating the
outputs of the Al core in order to activate the
correct responses. It tests the threat scores, system
context and operations parameters to categorize
events as genuine or malicious. In this regard, it
may raise security alerts, block IP addresses, or
recalculate firewalls by using SDN. It also backs
adaptive thresholding to minimize false alarms.
This layer will provide proportional response to
risks of the system appropriate balancing of
security and availability priorities to the system
particularly essential in such habitat as the critical
infrastructure or smart grid.

Monitoring Dashboard and Explainability
Module

In order to facilitate the transparency of the
operations, the system will contain the real-time
interface (dashboard) developed using tools such
as Grafana and Kibana. It presents threat warnings,
system activity and traffic trends to a user-friendly
dashboard. Some might also be interested in
interpretability of model decisions, which is also
integrated with SHAP explainability, as showing
which features (e.g., ports, protocols) contributed
most to an alert. It does not only simplify the
process of building trust and auditing to security
analysts but also guarantees adherence to such
requirements as NIST, ISO 27001, and GDPR. On
the whole, the module provides human-in-the-loop
analysis and allows the refinement of the models
based on feedback.
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Figure 2. Layered System Architecture of the Al-Powered Cyber Defense Framework for Real-Time
Threat Detection and Response

3.2 CNN-LSTM Based Anomaly Detection
To effectively model the spatio-temporal patterns
in cybersecurity data:

Convolutional Neural Network (CNN)

The spatial and hierarchical feature representation
extraction of raw cybersecurity data, e.g., packet
header fields, flow metadata, and payload
embedding embeddings will be extracted by the
Convolutional Neural Network (CNN) component
of the hybrid model. This data is often stored in an
organized form in the form of multi-dimensional
input tensors and includes some important
indicators source and destination IP addresses,
port numbers, protocol types, packet lengths, and
flag settings. The CNN uses a sequence of trainable
convolutional filters upon such inputs, which
allows discerning localized patterns and fine
correlations in the data. CNN sequentially
constructs increasingly abstracted feature maps by
convolutions (and non-linear activations (e.g.,
ReLU)) and pooling, as such form a topographical
representational structure highlighting low-level
artifacts of malicious activity: e.g. irregular port
usage, unusual protocol flags, or anomalous bytes
sequences which are commonly among the first
indicators of malicious activity. Through the use of
shared weights and spatial locality, CNNs in

essence are very effective at learning invariant
properties of cyber threat such as port scan, SYN
flooding, or injection payload, and how it occurs
and appears irrespective of where and how it
originated within the traffic stream. The generated
high-level feature vectors are fed into LSTM
module to give high-dimensional and low-
dimensional spatial information of the network
behavior to beToolbar studied further in time.

Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) model acts
as the tiny computational engine in the CNN-LSTM
system architecture, which was dedicated to seize
the long-range connection and the time-dependent
pattern in time series that are generated by
network traffic. Once the CNN obtains spatial
features of individual packets or flows, LSTM is fed
with the same results as ordered sequences and is
able to learn the temporal dynamics of the events.
In contrast with the traditional RNNs, LSTMs have
memory cells and gates (input, forget, and output
gates) that control information flow and enable the
model to remember the important context and
forget the noise signal and the redundant
information. LSTM is therefore especially useful at
detecting slower forms of cyberattacks which
develop over time, or are staged, like low-rate port
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scans that occur across multiple time windows,
time-lagged malware payloads which masquerade
normal behavior during malicious bursts, or
multistaged exploits with a recon followed by an
exploit. This behavioral anomaly temporal
awareness can be established by fitting lagged,
nonlinear models of the sort possible by the LSTM
and which may not be easily identifiable by batch
packet only analysis. As a result, the LSTM
provides an output that contains a time-sensitive
threat representation that is essential to ensuring
strong and context-specific intrusion detection
within real-time and non-static network setting.

Classification Output

The Classification Output stage is the top level of
the CNN-LSTM, as all the other layers are decision-
making layers and in this level, all temporal
embeddings generated in the LSTM network are
relayed through one or more fully connected
(dense) layers and then fed into a softmax
classifier. This classifier will decode the values
produced by the algorithm in a normalized
probability distribution of a set of threat types that
were set beforehand; a few of them are as follows:
Normal, DDoS, Brute Force, Botnet, Malware
injection, and others. Softmax can guarantee every
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o
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class probability lying between 0 and 1, and
summing up all the classes to 1, which gives the
model a facility to rank its predictions in order of
confidence. In training, the network is trained to
optimize a categorical cross-entropy loss, that is, a
loss that penalizes the distance between the
modeled probability distribution and the correct
one-hot encoded targets. This loss is suitable to
conduct multi-class classification and the model
could distinguish between multiple types of
threats effectively. This optimization step uses the
Adam optimizer, an adaptive gradient-based
algorithm, as it combines well-known benefits of
both AdaGrad and RMSProp to allow faster
convergence speed, and robustness in presence of
sparse gradients. To guard against overfitting and
promote generalizing on unseen data more
generally, the dense layers are regularized with
dropout training, where some fraction of the
neurons gets randomly disabled throughout the
training and prevents both the model to over-
depend on certain feature-paths. This delicately
designed output layer does both, it facilitates the
accuracy of threat classification and is capable of
facilitating confidence-driven decisions during
real-time cybersecurity activities.

LSTM

Classification
Output
Threat Class
Probabilities

Categorical Cross—Entropy Loss Optimizer. Adam

Dropout

Figure 3. CNN-LSTM Hybrid Architecture for Spatio-Temporal Anomaly Detection in Network Traffic

3.3 Reinforcement Learning for Adaptive
Threat Response

Reinforcement Learning (RL) module is the most
central module in implementing independent and
context-sensitive defense of the Al-enforced cyber
shield. This module does not have any set policies
in place unlike in a static rule-based system but
enables the system to dynamically engage with the
environment and learn how to respond in the best
way possible. The RL agent is based on the

cybersecurity environment as Markov Decision
Process (MDP), with the system observing a state,
making an action, awarding a reward, and moving
to a new state. This feedback process enables the
agent to continuously improve on its behavior in
order to achieve maximum long-term performance
of the defense.
»  State Space: The RL agent's perception of the
current environment is represented as a
multi-dimensional state vector. This includes
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features such as the type of detected threat
(e.g., DDoS, malware), the model’s confidence
score in its classification, system-level
metadata (e.g., CPU load, host vulnerability
level), time of detection, and network
behavior indicators. These inputs provide the
context required for situationally appropriate
decision-making.
» Action Space: The agent can choose from a
set of predefined cyber-defense actions,
which may include:
= Sending an
administrator

Ll Dropping suspicious network packets

=  [solating compromised hosts from the
network

=  Updating firewall
policies

*  Logging the incident for further analysis
each action has a corresponding cost and
benefit, influencing how and when it
should be executed based on the
scenario.

» Reward Function: The learning process is
guided by a custom reward function designed
to promote effective threat mitigation. The
goal is to maximize true positives (correct
threat responses) while minimizing false
positives (false alarms) and latency (delayed
response). The reward function is
mathematically expressed as:

alert to the system

or access control

R —oa.TP — B.FP — y. LATENCY

= FP: Number of false positives
= LATENCY: Response time in
milliseconds
= q,B,y: Tunable parameters that
control the importance of
accuracy and responsiveness
» Learning Algorithm: The Deep Q-Network
(DQN) is the learning algorithm that is
implemented. DQN uses a deep neural
network as approximation of the Q-value
function Q(s,a), with s denoting the state and
a- the action. The Q-values are the averaging
expected sum of cumulative reward after
taking the action a in the state s and then
pursuing the optimal policy. The experience
replay and the temporal-difference training
updates the network, where the agent can
generalize to new situations and learn stable
policies in noisy environments or novel
environments that the agent has not been
trained to observe.
With time, the RL agent learns to approach an
optimal policy 2pi that determines what action to
perform in what circumstance that would help to
reduce the effects of cyber threats. More
importantly, this module enables the framework to
automatically respond to novel attack patterns,
changing adversarial behaviors, and dynamically
changing network environments without the need
of manually changing rules and human
involvement. This is continuous learning ability,
which renders the system intelligent and resilient,
a requirement in MCI environments that need real-

Where: time defense.
= TP: Number of true positive
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- "N
RL Agent
. [ Q-Network ] . <

Cybersecurity ) Action Space

Environmentt Action :

« Threat Type State \ 4 Alert Admin

(DDoS, Malware,) » Policy 7 (s) Drop Packet

¢ Host/System
Metadata

¢ Confidence Score

¢ Detection Time

A 4

Reward functi

Reward

Isolate Host

Update Firewall

A4
’
=

o TP, o,y
7: Tunable

R = - TP—B- FP— LATENCY |

Update Q

J

Reward Function

Figure 4. Reinforcement Learning-Based Adaptive Threat Response Framework
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4. Experimental Setup

To check the efficiency and real-life practicality of
the suggested Al-based cyber defense system, we
performed numerous tests on two benchmark
cyber security data, CICIDS2017 and NSL-KDD. The
CICIDS2017 collection is also a new high-fidelity
dataset recording the traffic behaviours in a
realistic way, that is, normal and malicious flows
produced over a network testbed. It contains
DDoS, brute-force password attacks, intrusion,
botnets and web-based attacks, hence most
suitable to train and test anomaly detection

Differently, a more delicate version of the
traditional KDD dataset, namely NSL-KDD,
presents a normal test bed against which the
intrusion detection systems can be tested. It has a
balanced composition of normal traffic and other
sorts of attacks (e.g., Probe, DoS, U2R, R2L) not
only narrowing down the problem of redundancy
and imbalance as in its predecessor. These two
datasets were selected to provide a comprehensive
coverage in terms of the scope of the validation,
such as CICIDS2017 as a modern, high volume
traffic dataset and NSL-KDD as an older,

models in current threats environment. benchmarking dataset also to compare models.

Table 2. Overview and Comparison of CICIDS2017 and NSL-KDD Datasets

Dataset Year | Traffic Type Attack Types Realism | Volume
CICIDS2017 | 2017 | Realistic traffic DDoS, Infiltration, etc. High ~80 GB
NSL-KDD 2009 | Synthetic sessions | DoS, U2R, R2L, Probe Medium | Balanced

The python code was evaluated using an extensive
list of evaluation measures that evaluate the CNN-
LSTM based Anomaly detector and the
reinforcement learning based response module. In
order to measure the accuracy of the classification,
good detection rates, we calculated Accuracy,
Precision, Recall, and F1-Score, which give an
indication of correctness of the given model, its
susceptibility to attacks, and robustness of the
false positives and false negatives classification.
Moreover, False Positive Rate (FPR) caused close
attention, since high FPR may end up overloading
security teams with unusable false alerts, making
them lose confidence in automated systems.

Detection Latency measured as the duration
between occurrence of anomalies and the
consequent detection response was used to
determine the usefulness of the system in real-
time applications in edge and cloud systems. In the
case of reinforcement learning agent, we examined
the Policy Convergence Rate, which measures the
degree to which the RL model converges on an
effective threat mitigation policy. This multi-metric
testing will be designed to ascertain that the
suggested system should be not only precise and

resilient but also reactive, extending, and
adaptable operating in a volatile operation
condition.

Table 3. Evaluation Metrics Used for Model Performance Assessment

Metric Description

Accuracy Overall correctness of classification
Precision TP / (TP + FP): Attack identification accuracy
Recall TP / (TP + FN): Ability to detect all attacks
F1-Score Harmonic mean of Precision and Recall

False Positive Rate

Incorrect alarms as a percentage of total normal instances

Detection Latency

Average time (ms) to flag and respond to threats

Convergence Rate

Time taken for RL policy to stabilize in training

5. RESULTS AND DISCUSSION

The experiments confirm the effectiveness of the
suggested hybrid computer security system using
Al compared to the control ones: alone-cNN-LSTM
designs and traditional intrusion detection
facilities (IDS). The combination of CNN-LSTM + RL
model got an accuracy of 96.3th that is higher than
the standalone CNN-LSTM model that got an
accuracy of 93.4%. Also, the hybrid model
exhibited a 4 percentage F1-Score increase, going
from 0.91 to 0.95, which is more well-balanced
regarding precision and recall. Finally and most

importantly, the False Positive Rate (FPR) almost
halved, going down to 1.7 percent, compared to 3.2
percent in the baseline model, which is a crucial
improvement as far as avoiding alert fatigue and
inspiring belief in automated threat detection is
concerned. More than that, the mean detection
latency improved considerably, and it was lower
by 22 ms to 13 ms, which shows the framework is
now more suitable in real-time settings, where the
quick response to possible threats has to be taken
as priority to prevent the aftermath of a speedy
cyber-attack.
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Figure 5. Performance Comparison of CNN-LSTM Only vs. Hybrid Model

Practical deployment A simulated smart grid
testbed based on Mininet was used to validate the
framework against which it recorded individual
notification and mitigation latencies consistently
lower than 15 milliseconds. With this level of low-
latency performance that is also associated with
high detection accuracy, many companies can find
value in developing mission-critical applications in
the form of power distribution networks, funding
smart city infrastructure, and industrial control
systems, where a great deal of safety depends on
the ability of the model to perform well. The
hybrid design also proved that it was highly
resilient and capable of generalization in

simulations of zero-day attacks because it was able
to detect successfully previously unknown threats,
a scenario that the traditional IDS platforms like
Snort or Suricata have not been doing reliably.
These findings confirm that a deep spatio-
temporal learning with adaptive policy
optimization through reinforcement learning
amounts to a more intuitive, context-sensible and
self-improvising defense process. Easy converging,
error dominated and self-controlling learning
capabilities also qualify the model as a highly
efficient and scalable model in securing complex
computing systems as well as infrastructures.

Table 4. Comparative Performance Metrics of Baseline CNN-LSTM and Proposed Hybrid Al-Powered

Cyber Defense Model
Metric CNN-LSTM Only Hybrid CNN-LSTM + RL
Accuracy (%) 93.4 96.3
F1-Score 0.91 0.95
False Positive Rate (%) 3.2 1.7
Avg. Detection Latency (ms) 22 13

6. CONCLUSION

Finally, the current paper outlines an all-inclusive
and smart Al-based cyber defense paradigm that
supports the security of progressive computing
environments and  essential infrastructure
systems. This is because the proposed model,
which combines a hybrid CNN-LSTM network
trained to perform accurate spatio-temporal
anomaly detection with a reinforcement learning-
based agent to respond to threats in real-time and
adaptively, would be proving enhanced
performance in terms of detection accurateness,
false positive rate and mitigation delay. The
modular structure of the system aids real-time
decision-making, dynamic policy checking, and
explainable feedback based on integrated SHAP-
based monitoring, and meets the requirements of

being used in critical areas like smart grids,
industrial automation, and healthcare systems. The
model is robust and responsive in known, as well
as zero-day attacks, verified through experimental
results on CICIDS2017 and NSL-KDD datasets, and
applied on simulated smart grid scenario. In
addition, it has a reinforcement learning aspect,
which makes the system automatically learn and
adapt better defense strategies as time goes by,
which means that the framework does not require
human reconfiguration. To overall conclusion, in
the forefront the next advancements are expected
to emphasize the expansion of the framework to
federated learning to incorporate privacy-
preserving collaborative detection, integration of
explainable Al to enhance transparency threat
attribution, realization of hardware acceleration to
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guarantee ultra-low latency operation on edge

computing platforms,

and the foundation of

resilient, scalable, and intelligent cybersecurity on
distributed infrastructure systems.
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