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 In this paper, the new deep learning framework of joint channel 
estimation and signal equalization in Intelligent Reflecting Surface (IRS) 
assisted multi-hop wireless networks is proposed. IRS technology has 
also demonstrated an immense capability to improve signal propagation 
dynamic modification of the wireless environment especially in some 
complex multi-hop environments where conventional communication 
links can experience intense attenuation and fading. Nonetheless, the 
cascaded and dynamic IRS-assisted links come with much difficulty in 
the accurate estimation of channels and remedying inter-hop distortion. 
To fix this we would present an integrated model where Convolutional 
Neural Networks (CNNs) are used to extract spatial information and 
Bidirectional Long Short-Term Memory (Bi-LSTM) networks to 
represent temporal dependencies over multiple hops. The channel 
estimation is combined with signal equalization as end-to-end training 
of the framework is undertaken, thus removing the necessity to process 
sequentially. Simulations with an immense range of Rayleigh fading, 
different signal-to-noise ratio (SNR) and frequency conditions, prove 
that the proposed model provides great improvement in Bit Error Rate 
(BER) and Normalized Mean Square Error (NMSE) in comparison to 
conventional MMSE and LS-based techniques. These findings show that 
the deep learning is able to handle complex, high-dimensional 
interactions such as those used in IRS-enhanced multi-hop 
environments with promising efficiencies, pointing to low power 
consumptions and high throughputs in the next generation 6G and 
beyond systems. 
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1. INTRODUCTION 
Future 6G wireless communication networks will 
seek to overcome the increasing requirement of 
high data rates and low latency, immense 
connectivity, and consistency in dynamic 
surroundings. The major driver of this change is 
the Intelligent Reflecting Surfaces (IRS). An 
outstanding technology that has the potential to 
alter the wireless propagation space by 
dynamically controlling the phase shifts of a big 
number of passive entities. IRS is useful in multi-
hop wireless systems where direct links might be 
blocked or provides low signal strength, being able 

to intelligently reflect the signal in a multi-hop 
fashion along toward the destination and thus, 
improving the signal quality and extend its 
coverage. 
Nevertheless, multi-hop integration of IRS brings 
considerable technical difficulties, essentially in 
channel estimation and signal equalization. The 
multiple dynamic IRS-assisted links that make up 
the cascaded channel structure lead to a high-
dimensional and nonlinear propagation model, 
which is hard to estimate and equalize, especially 
through conventional methods. Least Squares (LS) 
and Minimum Mean Square Error (MMSE) are the 
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classical algorithms, but they are computationally 
intensive and cannot work well at the low signal-
to-noise ratio (SNR) because of lack of scalability 
and estimation errors. Recent steps in deep 
learning (DL) have provided better results in 
modeling complex and high dimensions systems 
utilizing a hierarchy of features and based on data-
driven optimization. However, in most studies to 
date the issues of channel estimation and 
equalization are studied independently of each 
other, or are considered only in single-hop IRS 
settings with no possibility of coupled optimization 
across channel estimation and equalization 
operations. 
Replacing the current system with a proposed one 
will lead to meeting these challenges; therefore, in 
this paper, a deep learning-based joint Channel 
Estimation and Equalization scheme will be 
presented in IRS-enhanced multi-hop wireless 
systems. The proposed system is highly efficient to 
learn nonlinear cascaded channel behavior over 
multiple hops utilizing a hybrid neural network 
that consists of a combination of Convolutional 
Neural Networks (CNNs) to learn the spatial 
features and Bidirectional Long Short-Term 
Memory (Bi-LSTM) networks, to learn temporal 
sequences. The joint design improves signal 
recovery accuracy, lowers error rates and performs 
better than conventional and decoupled 
approaches to DL-based methods used in a variety 
of channel conditions. 
The contribution helps to bridge a highly 
significant gap in the literature and it meets the 
future trend of AI-enhanced wireless systems. 
Literature in recent time has captured the 
possibility of learning-based schemes in IRS-aided 
communications but violate joint estimation and 
equalization transmission in the multi-hop domain 
[1]. 
 
2. RELATED WORK 
In IRS-assisted wireless networks, there must be 
channel estimation and equalization to be sure of 
recovering the signal. Least squares (LS) and 
Minimum Mean Square Error (MMSE) are some of 
the traditional estimation techniques widely used 
since they are simple and their analytical solution 
exists. Their performance is, however, greatly 
impaired when low signal-to-noise ratio (SNR) is 
observed or when the dimension of cascaded 
channels becomes big which is common in IRS 
deployment. Also, these model-based techniques 
are computer-intensive and ill-adapted to 
dynamically fluctuating settings. 
To overcome these difficulties, the new study has 
investigated the use of deep learning (DL) based on 
data estimation of the channel and equalization of 
the signal. Convolutional Neural Networks (CNNs) 
have been used in this respect due to their ability 

to extract spatial aspects of pilot signal matrices 
[1], whereas Recurrent Neural Networks (RNNs) 
and especially Long Short-Term Memory (LSTM) 
networks are found to learn the temporal 
correlations underlying time-varying channels [2]. 
Although showed great success, most of these 
works are bound by single-hop communication 
models or consider equalization and channel 
estimation to be tasks that can be independently 
accomplished, which can lead to suboptimal 
performance because the stages created errors 
propagation. Furthermore, the problem of 
simultaneous learning of channel estimation and 
equalization in the multi-hop IRS-assisted 
networks (multiple reflections, time-varying phase 
shifts) has not appeared in many studies yet. The 
current paper helps bridge the above research gap 
by suggesting a hybrid DL architecture that can 
simultaneously accomplish both tasks. CNNs and 
Bi-LSTMs for the spatial and temporal learning 
respectively, the combination of which allow for 
end-to-end learning on the multi-hop, complex IRS 
environment. 
 
3. System Model 
We view an IRS-aided multi-hop wireless 
communication framework in which there exists a 
source node (S), a destination node (D), several 
intermediate relay nodes and an Intelligent 
Reflecting Surface (IRS) panel or panels between 
the two end nodes. The intention of such a setup is 
to penetrate non-line-of-sight (NLoS) scenarios 
and enhance the signal with smartly reflected 
signals using IRS panels in key placements. Every 
IRS is formed by N passive reflecting elements each 
of them has the ability to independently change the 
phase of the incoming signal to maximize 
constructive interference at the receiver. The 
topology of signal transmission pathway is multi-
hop in scale, which is modeled as: 
𝑆𝑜𝑢𝑟𝑐𝑒 (𝑆)  →  𝐼𝑅𝑆1  →  𝑅𝑒𝑙𝑎𝑦1  →  𝐼𝑅𝑆2  → . . . .

→  𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝐷) − −− − − −
− − − − −− − − −−(1) 

Let the number of hops be denoted by M, where 
each hop consists of a direct wireless link and an 
IRS panel assisting signal reflection. 
Let: 
 Hi ɛ C Nri × Nti denote the complex baseband 

channel matrix of the ithhop, representing the 
channel between the ithtransmitting and 
receiving node (or IRS). 

 Θi=diag(ejoi1, ejoi2 …….. ejoin  ) denote the IRS 
reflection matrix at hop i, where each 
θij∈[0,2π) IRS element. 

Path loss-free cascaded end-to-end compromise 
channel of the multi-hop IRS-assisted link is 
simulated as: 
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𝐻𝑒𝑓𝑓  =   𝐻𝑖𝜃𝑖

𝑀

𝑖=1

− − −− − − −− − − − (2) 

The interactions between matrices of different 
channels and phase control that have been added 
by each IRS are multiplicative and dynamic and are 
captured with this formulation. 
The received signal y∈CNt×1at the destination node 
can be expressed as: 
Y =Heffx + n----------------------------(3) 
where: 
 X ∈CNt×1is the transmitted symbol vector, 
 n ∼CN(0,σ2I)is the additive white Gaussian 

noise (AWGN) vector with zero mean and 
variance σ2. 

This model of system reflects nonlinearity and 
high-dimensionality of an IRS-assisted multi-hop 
communication that challenges effective channel 
estimation and high-quality signal equalization. 
This problem is made complicated by the fact that 
the optimization of the multiple IRS phase shifts is 
joint, and the wireless channels across hops are 
time-varying. Figure 1 shows the structure of the 
considered multi-hop communication system, 
assisted by an IRS, where each hop has an IRS 
which also incorporates a programmable phase 
shift matrix. The overall channel produced by all 
the content delivered through the IRS-assisted 
channels constitutes a cascaded channel model, 
which is denoted by Heff. 

 

 
Figure 1. System model of an IRS-assisted multi-hop wireless communication network. 

 
The signal is transmitted from the source to the 
destination through multiple hops, each assisted 
by IRS panels that apply phase shift matrices Θi. 
The overall effective channel is modeled as 
𝐻𝑒𝑓𝑓  =   𝐻𝑖𝜃𝑖

𝑀
𝑖=1 . 

 
4. Deep Learning Framework 
This paper aims at dealing with the problems of 
channel estimation and signal equalization in IRS-
aided multi-hop wireless networks by studying the 
possibility of jointly learning them using a hybrid 
deep learning (DL) architecture. The model is 
explicitly created to represent the spatial and 
temporal dependencies that are usually found in 
cascaded multi-hop propagation scenarios. 
 
4.1 Model Architecture 
The given framework may be divided into three 
main facets: 
 CNN Layer Block: A set of convolutional 

neural network (CNN) layers is used to 
detect localizable spatial characteristics of 
the pilot signal matrices that are received. 
These properties code channel changes 
owing to reflection, phases shifts and 
interference patterns by the IRS and 
environmental factors. The CNN layers have 
an effective tool to help in feature 

abstraction using less complexity of 
parameters. 

 Bi-LSTM Layer Block: To successfully 
discover the temporal and sequential-
relationship between hops and time slots, 
we incorporate a Bidirectional Long Short-
Term Memory (Bi-LSTM) network. This 
repetitive pattern gives the model the 
capability of operating information 
processing both forward and backward 
across channel hops, which render it 
suitable in modeling the cascaded and time 
varying nature of channel response in the 
IRS enhanced inter-hop links. 

 DNN Output Head: The output block 
constitutes a fully connected deep neural 
network (DNN) that accomplishes the 
following two tasks: 

o Channel Coefficient Regression: Produces 
estimates of the channel response as real-
valued estimates. 

o Symbol Classification: A softmax layer is 
used as a prediction of transmitted symbol 
through the classification of modulation 
(e.g., QPSK or 16-QAM). 

Such combined structure allows the joint 
optimization of signal recovery and channel 
estimation to be performed. 
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4.2 Input and Output Structure 
 Input: 

The received pilot signals and their noisy 
observation make up the input to the model and 
are referred to as the received pilots and their 
noisy observations. 
𝑌𝑝𝑖𝑙𝑜𝑡  𝜖 𝐶𝑁𝑝×𝑇 −− − − −− − − − −− − − −− −

− − −− − − − (4) 
where NP is the number of pilot symbols and T is 
the number of hops or time slots. 

 Output: 
The output comprises two parts: 

o Estimated Channel Coefficients 
H^∈CM×N 

o Equalized Symbol Vector x^∈CK×1, 
where K denotes the number of 
transmitted symbols. 

 
4.3 Loss Function Design 
In order to train the model on both tasks, we 
propose a composite loss, as the sum of the two 
following terms: 
ℒ  =
𝜆1 .𝑁𝑀𝑆𝐸 (𝐻𝑝𝑟𝑒𝑑 ,𝐻𝑡𝑟𝑢𝑒 )  +

 𝜆2  .𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥𝑝𝑟𝑒𝑑 , 𝑥𝑡𝑟𝑢𝑒 )-----------------(5) 

Where: 
 NMSE𝐻𝑝𝑟𝑒𝑑 ,𝐻𝑡𝑟𝑢𝑒 denotes the normalized 

mean square error between predicted and 
true channel coefficients: 

𝑁𝑀𝑆𝐸 =  
 𝐻𝑡𝑟𝑢𝑒  − 𝐻𝑝𝑟𝑒𝑑  

2
2

 𝐻𝑡𝑟𝑢𝑒  
2
2

-----------------------(6) 

 CrossEntropy(𝑥𝑝𝑟𝑒𝑑 , 𝑥𝑡𝑟𝑢𝑒 ) is the categorical 

cross-entropy loss between predicted and 
ground truth symbol labels. 

 λ1,λ2∈R+ are hyperparameters that balance 
the trade-off between channel estimation and 
symbol classification accuracy. 

The formulation used to address this definition of 
loss guarantees multiple objectives in the model to 
simultaneously optimize correct channel 
reconstruction and sound symbol decoding which 
is a necessary constraint in a dynamic multi-hop 
setting where there are IRS-affirmed projections. 
Figure 2 shows the general structure of the 
proposed deep learning hybrid framework. The 
stack of the convolutional layers is trained on the 
received pilot signals and noisy observations, and 
then the stack is used with a bidirectional LSTM 
block to learn the sequential dependencies across 
the number of hops. The output head conducts 
estimation of the coefficient of channels 
simultaneously with symbol classifications. The 
training is done to together optimize both tasks 
using a composite loss function. 

 

 
Figure 2. Schematic of the proposed deep learning-based joint channel estimation and equalization 

framework. 
 
The architecture has a CNN network block in order 
to extract spatial features, a Bi-LSTM network in 
order to capture temporal dependency of hops, and 
a DNN network output head to perform channel 
coefficient regression and symbol classification. 
The composite loss is a combination of both the 

NMSE and the cross-entropy loss functions which 
are used in the training of the model. 
 
5. Simulation Setup 
In order to assess the efficacy of the suggested 
deep learning-based joint channel estimation and 
equalization system, a string of simulations has 
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been performed based on a homemade wireless 
communication environment. Parameters and 
settings of the simulation are selected in a way that 
make them as close as possible to the realistic 
configuration of multi-hop transmission with the 
help of the intelligent reflecting surface (IRS). 
Figure 3 contains a summary of simulation 

environment and evaluation parameters. It 
includes the most important details of the setup 
such as the channel modelling assumptions, 
network topology, type of modulation, SNR values, 
baseline comparison procedure, and the 
performance measurement procedures that are 
used in benchmarking the performance. 

 

 
Figure 3. Overview of the simulation setup for evaluating the proposed deep learning-based joint channel 

estimation and equalization framework. 
 
It applies the performance levels of Rayleigh 
fading, AWGN channel modeling, 3-hop IRS-based 
network with 64-element panels, QPSK, 16-QAM 
modulation schemes, and SNR of -10 dB to 20 dB 
compared with the baselines technique, such as the 
MMSE, LS + ZF, and independent DL modules. 
Performance evaluation is done in terms of NMSE, 
and BER. 
 
5.1 Environment and Channel Modeling 
All the simulations were designed in Python, and 
the TensorFlow deep learning framework as it has 
the possibility to create a different custom neural 
network model by illustration and optimize it with 
GPU-accelerated computing. The substandard 
wireless channel model is a Rayleigh fading 
distribution, which is the prevailing statistical 
thermometer of simulating a non-line-of-sight 
(NLoS) propagation condition of the urban, and 
indoor setting. At the receiver an Additive White 
Gaussian Noise (AWGN) was assumed to model 
thermal and background noise. 
 
5.2 Network Topology 
The virtual network is a 3-hop transmission 
system, in which the source node provides 
communication with the destination node by 
means of two additional relay nodes where each of 
them are assisted with an IRS panel. All IRS panels 
consist of 64 passive reflecting elements that can 
dynamically tune phase shifts. The topology 
indicates the intricacy and the layer of a realistic 

multi-hop wireless implementation boosted with 
IRS-guided propagation manipulation. 
 
5.3 Modulation Scheme 
The common digital modulation patterns were 
used to evaluate the performance with dissimilar 
transmission complexities using two digital 
modulation schemes: 
 Quadrature Phase Shift Keying (QPSK) 
 16- Quadrature Amplitude Modulation (16-

QAM) 
These schemes permit evaluation under not only 
low-order, but also higher-order modulation 
settings that encompasses the robustness of the 
framework to serve a wide range of spectral 
efficiency needs. 
 
5.4 Signal-to-Noise Ratio (SNR) Settings 
The simulation covered a vast range of SNRs -10dB 
to 20dB which is both of low and moderate-to-high 
quality channel conditions. This is the range that 
allows to comprehensively assess the resilience 
and flexibility of the model, especially when it 
comes to low-SNR conditions when the 
conventional estimation schemes are bound to fail. 
 
5.5 Benchmark Baseline Methods 
To do a comparative analysis, the following 
baseline approaches were adopted: 
• Minimum Mean Square Error (MMSE): A 

classical and most popular estimation 
technique which is statistically optimal when 
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linear estimators are assumed to be Gaussian 
noise. 

• Least Squares recycled into Zero Forcing 
(LS+ZF): A two stage standard sequence 
common in practical receivers. 

• Distinct Deep Learning-Based Estimation and 
Equalization: In it, estimation and equalization 
are performed using separate deep-learning-
based models, not trained jointly. 

The joint scheme suggested is considered to these 
baselines considering Normalized Mean Square 
Error (NMSE) to evaluate the quality of channel 
estimations and Bit Error Rate (BER) to evaluate 
the quality of symbol recovery. 
 
6. RESULTS AND DISCUSSION 
In order to quantify the usefulness of the suggested 
collaborative deep learning architecture, detailed 
simulations were carried out, and their 
performance were measured according to two 
main parameters namely Normalized Mean Square 
Error (NMSE) to measure the quality of channel 
estimation and Bit Error Rate (BER) to measure 
the quality of symbol recovery. Those outcomes 
were compared to traditional methods (MMSE, 
LS+ZF) and a FLAT baseline deep learning model 
that has independent estimation and equalization 
units. 
 
6.1 Channel Estimation Accuracy 
Hybrid model had higher estimation channel 
accuracy in all tested SNRs. The joint deep learning 
model proposed in Figure 2 and Table 1 showed 
consistently 30-40 per cent reduction in NMSE 
measures against MMSE and LS+ZF, as shown in 
Table 1. The high caliber can be explained by the 
end-to-end training of the CNN and Bi-LSTM layers 
that allow learning the spatial patterns in received 
signals and temporal relations across multi-hop 
channels. Further, the ASR model capacity within 
expositing great variability in SNR is a 
characteristic of its strength and flexibility. 
 
6.2 Equalization Performance 
The symbol, detected correctly, which is measured 
through BER, also showed tremendous 
improvements. The proposed model was able to 
provide up to 45 percent less BER at low SNR 
values (e.g. -5 to 0 dB) than that provided by 
conventional techniques (see Figure 3 and Table 
2). This finding makes the point about the power of 
joint learning in reducing errors that can 
propagate the estimation to the equalization 
processes. As opposed to the cascaded models, the 
integrated framework has the advantage that the 
learned properties of the channel directly improve 
the linear symbol recovery process. 
 
6.3 Robustness to System Variations 

Robustness testing was done by running the model 
in an environment of IRS phase quantization errors 
and channel mobility, used to simulate real-world 
impairments in the form of hardware constraints 
and a dynamic propagation environment. The 
model demonstrated a steady performance with a 
degradation of fewer than 10 percent of NMSE and 
BER with the IRS phase resolution as low as 2-bit 
quantifications. Moreover, performance was not 
affected significantly by temporal variations in 
channel coefficients due to moderate mobility (e.g. 
Doppler spread) thereby validating the temporal 
modeling capability of the Bi-LSTM layers. 
 
6.4 Ablation Study 
To learn the individual effects of several 
components of the model, an ablation study was 
run. Replacing the joint training with the separate 
training of the CNN and Bi-LSTM modules led to an 
overall 22 per cent increase in NMSE and 28 per 
cent decrease in BER at moderate SNR values. In 
the same manner, layer replacement of Bi-LSTM 
layers with standard dense layers, further 
simplified the capability of the model to identify 
the inter-hop dependencies, especially in 
situations when the IRS configuration is dynamic. 
The findings highlight the significant role of 
temporal modeling and joint optimization toward 
realizing optimal end-to-end performance, in IRS-
aided multi-hop settings. 
 
7. CONCLUSION AND FUTURE WORK 
The paper proposes a new deep-learning 
framework of multi-hop wireless networks with 
IRS regarding joint estimation of channels and 
channel equalization. The proposed solution has 
the opportunity to incorporate the convolutional 
neural networks (CNNs) and bidirectional LSTM 
(Bi-LSTM) layers into a common model, which can 
understand both the spatial features and temporal 
correlations of the cascaded environment of 
channel channels. The end-to-end connectivity 
permits optimization of the entire system, which 
decreases system complexity and propagation of 
estimation-related errors which is characteristic of 
traditional two-stage estimation-equalization 
structures. 
The efficacy of the framework is confirmed by 
simulation outcomes that indicate the notable 
improvement (30-40 percent) in NMSE and 25 to 
45 percent in BER compared to the MMSE, LS+ZF, 
and DL models trained individually. Moreover, the 
high level of resistance to quantization errors in 
IRS phases and moderate channel mobility serve as 
evidence of the versatility of the model to the real 
conditions. Joint learning and temporal modeling 
are also important in improving performance as 
demonstrated by an ablation study. 



   82 Electronics, Communications, and Computing Summit | Apr - Jun 2025 

 

Charpe Prasanjeet Prabhakar et al / Deep Learning-Based Joint Channel Estimation and Equalization for 
IRS-Assisted Multi-Hop Wireless Networks 

 

 
 

This work has mainly contributed in the following 
ways: 
• End-to-end optimization architecture design 

with multi-hops experience using a hybrid 
deep learning system. 

• Higher estimation and decoding accuracy in a 
wide SNR range. 

• Robustness verification as per quantized IRS 
control and dynamic channels. 

Future developments will aim at increasing the 
flexibility of a model by online learning and 
reinforcement learning methods that allow real-
time optimisation of CSI within dynamic 
environments. We also look to build on this to 
MIMO-OFDM systems where the CSI feedback is 
imperfect or partial and our work can further close 
the gap between theoretical models and real-life 
6G implementation situations. 
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