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In this paper, the new deep learning framework of joint channel
estimation and signal equalization in Intelligent Reflecting Surface (IRS)
assisted multi-hop wireless networks is proposed. IRS technology has
also demonstrated an immense capability to improve signal propagation
dynamic modification of the wireless environment especially in some
complex multi-hop environments where conventional communication
links can experience intense attenuation and fading. Nonetheless, the
cascaded and dynamic IRS-assisted links come with much difficulty in
the accurate estimation of channels and remedying inter-hop distortion.
To fix this we would present an integrated model where Convolutional
Neural Networks (CNNs) are used to extract spatial information and
Bidirectional Long Short-Term Memory (Bi-LSTM) networks to
represent temporal dependencies over multiple hops. The channel
estimation is combined with signal equalization as end-to-end training
of the framework is undertaken, thus removing the necessity to process
sequentially. Simulations with an immense range of Rayleigh fading,
different signal-to-noise ratio (SNR) and frequency conditions, prove
that the proposed model provides great improvement in Bit Error Rate
(BER) and Normalized Mean Square Error (NMSE) in comparison to
conventional MMSE and LS-based techniques. These findings show that
the deep learning is able to handle complex, high-dimensional
interactions such as those used in IRS-enhanced multi-hop
environments with promising efficiencies, pointing to low power
consumptions and high throughputs in the next generation 6G and
beyond systems.

1. INTRODUCTION

to intelligently reflect the signal in a multi-hop

Future 6G wireless communication networks will
seek to overcome the increasing requirement of
high data rates and low latency, immense
connectivity, and consistency in dynamic
surroundings. The major driver of this change is
the Intelligent Reflecting Surfaces (IRS). An
outstanding technology that has the potential to
alter the wireless propagation space by
dynamically controlling the phase shifts of a big
number of passive entities. IRS is useful in multi-
hop wireless systems where direct links might be
blocked or provides low signal strength, being able

fashion along toward the destination and thus,
improving the signal quality and extend its
coverage.

Nevertheless, multi-hop integration of IRS brings
considerable technical difficulties, essentially in
channel estimation and signal equalization. The
multiple dynamic IRS-assisted links that make up
the cascaded channel structure lead to a high-
dimensional and nonlinear propagation model,
which is hard to estimate and equalize, especially
through conventional methods. Least Squares (LS)
and Minimum Mean Square Error (MMSE) are the
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classical algorithms, but they are computationally
intensive and cannot work well at the low signal-
to-noise ratio (SNR) because of lack of scalability
and estimation errors. Recent steps in deep
learning (DL) have provided better results in
modeling complex and high dimensions systems
utilizing a hierarchy of features and based on data-
driven optimization. However, in most studies to
date the issues of channel estimation and
equalization are studied independently of each
other, or are considered only in single-hop IRS
settings with no possibility of coupled optimization
across channel estimation and equalization
operations.

Replacing the current system with a proposed one
will lead to meeting these challenges; therefore, in
this paper, a deep learning-based joint Channel
Estimation and Equalization scheme will be
presented in IRS-enhanced multi-hop wireless
systems. The proposed system is highly efficient to
learn nonlinear cascaded channel behavior over
multiple hops utilizing a hybrid neural network
that consists of a combination of Convolutional
Neural Networks (CNNs) to learn the spatial
features and Bidirectional Long Short-Term
Memory (Bi-LSTM) networks, to learn temporal
sequences. The joint design improves signal
recovery accuracy, lowers error rates and performs
better than conventional and decoupled
approaches to DL-based methods used in a variety
of channel conditions.

The contribution helps to bridge a highly
significant gap in the literature and it meets the
future trend of Al-enhanced wireless systems.
Literature in recent time has captured the
possibility of learning-based schemes in IRS-aided
communications but violate joint estimation and
equalization transmission in the multi-hop domain

[1].

2. RELATED WORK

In IRS-assisted wireless networks, there must be
channel estimation and equalization to be sure of
recovering the signal. Least squares (LS) and
Minimum Mean Square Error (MMSE) are some of
the traditional estimation techniques widely used
since they are simple and their analytical solution
exists. Their performance is, however, greatly
impaired when low signal-to-noise ratio (SNR) is
observed or when the dimension of cascaded
channels becomes big which is common in IRS
deployment. Also, these model-based techniques
are computer-intensive and ill-adapted to
dynamically fluctuating settings.

To overcome these difficulties, the new study has
investigated the use of deep learning (DL) based on
data estimation of the channel and equalization of
the signal. Convolutional Neural Networks (CNNs)
have been used in this respect due to their ability

to extract spatial aspects of pilot signal matrices
[1], whereas Recurrent Neural Networks (RNNs)
and especially Long Short-Term Memory (LSTM)
networks are found to learn the temporal
correlations underlying time-varying channels [2].
Although showed great success, most of these
works are bound by single-hop communication
models or consider equalization and channel
estimation to be tasks that can be independently
accomplished, which can lead to suboptimal
performance because the stages created errors
propagation. Furthermore, the problem of
simultaneous learning of channel estimation and
equalization in the multi-hop IRS-assisted
networks (multiple reflections, time-varying phase
shifts) has not appeared in many studies yet. The
current paper helps bridge the above research gap
by suggesting a hybrid DL architecture that can
simultaneously accomplish both tasks. CNNs and
Bi-LSTMs for the spatial and temporal learning
respectively, the combination of which allow for
end-to-end learning on the multi-hop, complex IRS
environment.

3. System Model
We view an IRS-aided multi-hop wireless
communication framework in which there exists a
source node (S), a destination node (D), several
intermediate relay nodes and an Intelligent
Reflecting Surface (IRS) panel or panels between
the two end nodes. The intention of such a setup is
to penetrate non-line-of-sight (NLoS) scenarios
and enhance the signal with smartly reflected
signals using IRS panels in key placements. Every
IRS is formed by N passive reflecting elements each
of them has the ability to independently change the
phase of the incoming signal to maximize
constructive interference at the receiver. The
topology of signal transmission pathway is multi-
hop in scale, which is modeled as:
Source (§) —» IRS; — Relay; — IRS, —....

— Destination (D) — — — — — —

Let the number of hops be denoted by M, where
each hop consists of a direct wireless link and an
IRS panel assisting signal reflection.

Let:

e Hie C Nri x Nti denote the complex baseband
channel matrix of the itthop, representing the
channel between the ihtransmitting and
receiving node (or IRS).

o Oi=diag(eioll, eiviz ....... eloin ) denote the IRS
reflection matrix at hop i, where each
0;;€[0,2m) IRS element.

Path loss-free cascaded end-to-end compromise
channel of the multi-hop IRS-assisted link is
simulated as:
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M
Hepp = nHiei ——————————— 2)
i=1

The interactions between matrices of different
channels and phase control that have been added
by each IRS are multiplicative and dynamic and are
captured with this formulation.

The received signal yeCNt-1at the destination node
can be expressed as:

e X e(CNtljs the transmitted symbol vector,

e n ~CN(0,0%l)is the additive white Gaussian
noise (AWGN) vector with zero mean and
variance o2.

H,6,

This model of system reflects nonlinearity and
high-dimensionality of an [RS-assisted multi-hop
communication that challenges effective channel
estimation and high-quality signal equalization.
This problem is made complicated by the fact that
the optimization of the multiple IRS phase shifts is
joint, and the wireless channels across hops are
time-varying. Figure 1 shows the structure of the
considered multi-hop communication system,

assisted by an IRS, where each hop has an IRS
which also incorporates a programmable phase
shift matrix. The overall channel produced by all
the content delivered through the IRS-assisted
channels constitutes a cascaded channel model,
which is denoted by Hesr.

Source |—»

(S)

IRS;

Hefr = ﬁ H;6;
i=1

y=Hegx+n

Destina-
tion

(D)

Figure 1. System model of an IRS-assisted multi-hop wireless communication network.

The signal is transmitted from the source to the
destination through multiple hops, each assisted
by IRS panels that apply phase shift matrices ©;.
The overall effective channel is modeled as
H.rr = T4, H;6;.

4. Deep Learning Framework

This paper aims at dealing with the problems of
channel estimation and signal equalization in IRS-
aided multi-hop wireless networks by studying the
possibility of jointly learning them using a hybrid
deep learning (DL) architecture. The model is
explicitly created to represent the spatial and
temporal dependencies that are usually found in
cascaded multi-hop propagation scenarios.

4.1 Model Architecture
The given framework may be divided into three
main facets:

e CNN Layer Block: A set of convolutional
neural network (CNN) layers is used to
detect localizable spatial characteristics of
the pilot signal matrices that are received.
These properties code channel changes
owing to reflection, phases shifts and
interference patterns by the IRS and
environmental factors. The CNN layers have
an effective tool to help in feature
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abstraction using less complexity of
parameters.

e Bi-LSTM Layer Block: To successfully
discover the temporal and sequential-

relationship between hops and time slots,
we incorporate a Bidirectional Long Short-
Term Memory (Bi-LSTM) network. This
repetitive pattern gives the model the
capability of operating information
processing both forward and backward
across channel hops, which render it
suitable in modeling the cascaded and time
varying nature of channel response in the
IRS enhanced inter-hop links.

e DNN Output Head: The output block
constitutes a fully connected deep neural
network (DNN) that accomplishes the
following two tasks:

o  Channel Coefficient Regression: Produces
estimates of the channel response as real-
valued estimates.

o Symbol Classification: A softmax layer is
used as a prediction of transmitted symbol
through the classification of modulation
(e.g., QPSK or 16-QAM).

Such combined structure allows the joint
optimization of signal recovery and channel
estimation to be performed.
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4.2 Input and Output Structure
e Input:
The received pilot signals and their noisy
observation make up the input to the model and
are referred to as the received pilots and their
noisy observations.
Voigor €CP*T — — — — — — — — — — — — ———
——————— @
where Np is the number of pilot symbols and T is
the number of hops or time slots.
e OQOutput:
The output comprises two parts:
o Estimated Channel Coefficients
H"reCMxN
o Equalized Symbol Vector x"€CKx1,
where K denotes the number of
transmitted symbols.

4.3 Loss Function Design

In order to train the model on both tasks, we

propose a composite loss, as the sum of the two

following terms:

=

Al .NMSE (Hpred'Htrue) +

Ay . CrosSENtropy (Xpred » Xerye )-============--=- (5

Where:

e NMSEH, ¢4, Hyye denotes  the  normalized
mean square error between predicted and
true channel coefficients:

"Htrue _Hpred ”;
WHerue 15

e CrossEntropy (Xpyeq , Xue ) 1S the categorical
cross-entropy loss between predicted and
ground truth symbol labels.

e A ,A2ER* are hyperparameters that balance
the trade-off between channel estimation and
symbol classification accuracy.

The formulation used to address this definition of
loss guarantees multiple objectives in the model to
simultaneously  optimize  correct  channel
reconstruction and sound symbol decoding which
is a necessary constraint in a dynamic multi-hop
setting where there are IRS-affirmed projections.
Figure 2 shows the general structure of the
proposed deep learning hybrid framework. The
stack of the convolutional layers is trained on the
received pilot signals and noisy observations, and
then the stack is used with a bidirectional LSTM
block to learn the sequential dependencies across
the number of hops. The output head conducts
estimation of the coefficient of channels
simultaneously with symbol classifications. The
training is done to together optimize both tasks
using a composite loss function.

NMSE =

, 5 Bi-L=5TM 5
Yp(Np=T Eavarblosk DNN Output Head
e Channel
Eldlregtgor:tal Coefficient
Tgpmg Mecr)'nc; Regression
i &eCX Jzpl)

Received Convoillutional

: b Estimated Equalized
Pilot Signals  Layers Channel Coefficients Symbol Vector
and Noisy
Observations HeCM x N
\4
( Equalized )
L =\, -NMSEE((H pred, ) + A2 CrossEntropy) Symbol Vector

7eCKEx1

Figure 2. Schematic of the proposed deep learning-based joint channel estimation and equalization
framework.

The architecture has a CNN network block in order
to extract spatial features, a Bi-LSTM network in
order to capture temporal dependency of hops, and
a DNN network output head to perform channel
coefficient regression and symbol classification.
The composite loss is a combination of both the

NMSE and the cross-entropy loss functions which
are used in the training of the model.

5. Simulation Setup

In order to assess the efficacy of the suggested
deep learning-based joint channel estimation and
equalization system, a string of simulations has
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been performed based on a homemade wireless
communication environment. Parameters and
settings of the simulation are selected in a way that
make them as close as possible to the realistic
configuration of multi-hop transmission with the
help of the intelligent reflecting surface (IRS).
Figure 3 contains a summary of simulation

environment and evaluation parameters. It
includes the most important details of the setup
such as the channel modelling assumptions,
network topology, type of modulation, SNR values,
baseline  comparison procedure, and the
performance measurement procedures that are
used in benchmarking the performance.

Channel Modeling

N N
Network Topology

IRS panel

e o || GPSK
+ 64x64 x 16_QAM
B Gl || g
NG N J

4 Modulation Scheme\

7 k-
) Baseline Methods

(Performance Metrics\

SNR Range
MMSE
NMSE
-10 dB -~ 20 dB
LS+ZF BER
Separate DL
FaY J J

Figure 3. Overview of the simulation setup for evaluating the proposed deep learning-based joint channel
estimation and equalization framework.

It applies the performance levels of Rayleigh
fading, AWGN channel modeling, 3-hop IRS-based
network with 64-element panels, QPSK, 16-QAM
modulation schemes, and SNR of -10 dB to 20 dB
compared with the baselines technique, such as the
MMSE, LS + ZF, and independent DL modules.
Performance evaluation is done in terms of NMSE,
and BER.

5.1 Environment and Channel Modeling

All the simulations were designed in Python, and
the TensorFlow deep learning framework as it has
the possibility to create a different custom neural
network model by illustration and optimize it with
GPU-accelerated computing. The substandard
wireless channel model is a Rayleigh fading
distribution, which is the prevailing statistical
thermometer of simulating a non-line-of-sight
(NLoS) propagation condition of the urban, and
indoor setting. At the receiver an Additive White
Gaussian Noise (AWGN) was assumed to model
thermal and background noise.

5.2 Network Topology

The virtual network is a 3-hop transmission
system, in which the source node provides
communication with the destination node by
means of two additional relay nodes where each of
them are assisted with an IRS panel. All IRS panels
consist of 64 passive reflecting elements that can
dynamically tune phase shifts. The topology
indicates the intricacy and the layer of a realistic

Electronics, Communications, and Computing Summit | Apr -

multi-hop wireless implementation boosted with
IRS-guided propagation manipulation.

5.3 Modulation Scheme

The common digital modulation patterns were

used to evaluate the performance with dissimilar

transmission complexities using two digital

modulation schemes:

e Quadrature Phase Shift Keying (QPSK)

e 16- Quadrature Amplitude Modulation (16-
QAM)

These schemes permit evaluation under not only

low-order, but also higher-order modulation

settings that encompasses the robustness of the

framework to serve a wide range of spectral

efficiency needs.

5.4 Signal-to-Noise Ratio (SNR) Settings

The simulation covered a vast range of SNRs -10dB
to 20dB which is both of low and moderate-to-high
quality channel conditions. This is the range that
allows to comprehensively assess the resilience
and flexibility of the model, especially when it
comes to low-SNR conditions when the
conventional estimation schemes are bound to fail.

5.5 Benchmark Baseline Methods

To do a comparative analysis, the following

baseline approaches were adopted:

e Minimum Mean Square Error (MMSE): A
classical and most popular estimation
technique which is statistically optimal when
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linear estimators are assumed to be Gaussian
noise.

e Least Squares recycled into Zero Forcing
(LS+ZF): A two stage standard sequence
common in practical receivers.

¢ Distinct Deep Learning-Based Estimation and
Equalization: In it, estimation and equalization
are performed using separate deep-learning-
based models, not trained jointly.

The joint scheme suggested is considered to these

baselines considering Normalized Mean Square

Error (NMSE) to evaluate the quality of channel

estimations and Bit Error Rate (BER) to evaluate

the quality of symbol recovery.

6. RESULTS AND DISCUSSION

In order to quantify the usefulness of the suggested
collaborative deep learning architecture, detailed
simulations were carried out, and their
performance were measured according to two
main parameters namely Normalized Mean Square
Error (NMSE) to measure the quality of channel
estimation and Bit Error Rate (BER) to measure
the quality of symbol recovery. Those outcomes
were compared to traditional methods (MMSE,
LS+ZF) and a FLAT baseline deep learning model
that has independent estimation and equalization
units.

6.1 Channel Estimation Accuracy

Hybrid model had higher estimation channel
accuracy in all tested SNRs. The joint deep learning
model proposed in Figure 2 and Table 1 showed
consistently 30-40 per cent reduction in NMSE
measures against MMSE and LS+ZF, as shown in
Table 1. The high caliber can be explained by the
end-to-end training of the CNN and Bi-LSTM layers
that allow learning the spatial patterns in received
signals and temporal relations across multi-hop
channels. Further, the ASR model capacity within
expositing great variability in SNR is a
characteristic of its strength and flexibility.

6.2 Equalization Performance

The symbol, detected correctly, which is measured
through BER, also showed tremendous
improvements. The proposed model was able to
provide up to 45 percent less BER at low SNR
values (e.g. -5 to 0 dB) than that provided by
conventional techniques (see Figure 3 and Table
2). This finding makes the point about the power of
joint learning in reducing errors that can
propagate the estimation to the equalization
processes. As opposed to the cascaded models, the
integrated framework has the advantage that the
learned properties of the channel directly improve
the linear symbol recovery process.

6.3 Robustness to System Variations

Robustness testing was done by running the model
in an environment of IRS phase quantization errors
and channel mobility, used to simulate real-world
impairments in the form of hardware constraints
and a dynamic propagation environment. The
model demonstrated a steady performance with a
degradation of fewer than 10 percent of NMSE and
BER with the IRS phase resolution as low as 2-bit
quantifications. Moreover, performance was not
affected significantly by temporal variations in
channel coefficients due to moderate mobility (e.g.
Doppler spread) thereby validating the temporal
modeling capability of the Bi-LSTM layers.

6.4 Ablation Study

To learn the individual effects of several
components of the model, an ablation study was
run. Replacing the joint training with the separate
training of the CNN and Bi-LSTM modules led to an
overall 22 per cent increase in NMSE and 28 per
cent decrease in BER at moderate SNR values. In
the same manner, layer replacement of Bi-LSTM
layers with standard dense layers, further
simplified the capability of the model to identify
the inter-hop dependencies, especially in
situations when the IRS configuration is dynamic.
The findings highlight the significant role of
temporal modeling and joint optimization toward
realizing optimal end-to-end performance, in IRS-
aided multi-hop settings.

7. CONCLUSION AND FUTURE WORK

The paper proposes a new deep-learning
framework of multi-hop wireless networks with
IRS regarding joint estimation of channels and
channel equalization. The proposed solution has
the opportunity to incorporate the convolutional
neural networks (CNNs) and bidirectional LSTM
(Bi-LSTM) layers into a common model, which can
understand both the spatial features and temporal
correlations of the cascaded environment of
channel channels. The end-to-end connectivity
permits optimization of the entire system, which
decreases system complexity and propagation of
estimation-related errors which is characteristic of
traditional two-stage estimation-equalization
structures.

The efficacy of the framework is confirmed by
simulation outcomes that indicate the notable
improvement (30-40 percent) in NMSE and 25 to
45 percent in BER compared to the MMSE, LS+ZF,
and DL models trained individually. Moreover, the
high level of resistance to quantization errors in
IRS phases and moderate channel mobility serve as
evidence of the versatility of the model to the real
conditions. Joint learning and temporal modeling
are also important in improving performance as
demonstrated by an ablation study.

81 Electronics, Communications, and Computing Summit | Apr - Jun 2025



Charpe Prasanjeet Prabhakar et al / Deep Learning-Based Joint Channel Estimation and Equalization for
IRS-Assisted Multi-Hop Wireless Networks

This work has mainly contributed in the following

ways:

. End-to-end optimization architecture design
with multi-hops experience using a hybrid
deep learning system.

. Higher estimation and decoding accuracy in a
wide SNR range.

. Robustness verification as per quantized IRS
control and dynamic channels.

Future developments will aim at increasing the

flexibility of a model by online learning and

reinforcement learning methods that allow real-
time optimisation of CSI within dynamic
environments. We also look to build on this to

MIMO-OFDM systems where the CSI feedback is

imperfect or partial and our work can further close

the gap between theoretical models and real-life
6G implementation situations.
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