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Development of the customary wireless communication solutions is
based on discrete, specialist-designed modules of modulation and signal
recognition. Such systems are effective in an ideal situation but cannot
satisfy the increasing demands of the next-generation 6G networks that
need ultra-low latency, high reliability, and real-time responsiveness to a
variety of different and dynamically changing channel conditions. The
proposed paper presents a new end-to-end deep learning framework
that is trained to learn modulation strategy, and signal detecting
strategy simultaneously through the use of data. The communications
pipeline can be expressed as a trainable autoencoder: the transmitter,
the receiver, and the channel are carried by neural networks, and the
channel is implemented in a differentiable layer that simulates additive
noise, fading, and non-linear distortions. The model suggested is trained
based on supervised learning to reduce bit reconstruction error at
different signal-to-noise levels (SNRs) and channel situations.
Experimental test results prove that the end-to-end solution is much
better than the traditional modulation techniques (e.g. QAM, BPSK),
superior bit error rate (BER) performance in non-ideal channel
transmissions is observed over Rayleigh fading and composite channels.
It also has robustness and generalization over types of channels without
any manual tuning within the model. The findings support the viability
of end-to-end learning as a possible method to the problem of the
physical layer of 6G communication systems so that data-driven,
adaptive, and intelligent transceiver design becomes feasible. Future
extensions will consider the extension to MIMO, real-time hardware
deployment, and combining with reinforcement making the system
online adjustable.

1. INTRODUCTION

The new wireless networks of the sixth generation (DL) allow
support richer
applications including real-time extended reality

(6G) are conceptualized to

However, recent developments in deep learning
revisiting the problem of
communication system design, i.e., the possibility
of formulating the latter as an end-to-end

(XR), holographic high fidelity communications,
and ultra-reliable low latency communication
(URLLC). They are unprecedented demands in the
physical layer in terms of adaptability, latency and
spectral efficiency, in these use cases. Nevertheless,
the conventional design of communication systems
is modular in terms that the modulation and
detection processes are designed and optimized
separately. Although this separation eases the
analysis, it restricts performance contrasting the
complicated stationary channel circumstances, eg
presented by mobility, equipment non-linearities,
and compromising propagation conditions.

optimization problem, with the transmission to
reception chain represented by neural networks.
This supports simultaneous training of modulation
and detection his approach, and it supports data-
driven, adaptive communication that is
customizable to the channel. Although some other
works have used DL to detect signals or to estimate
channels, these do not assume modulation formats
to be considered fixed and do not consider full-
pipeline integration [1].

In order to overcome this gap, in this paper, we
introduce a deep learning based end-to-end
system, which jointly learns modulation and
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detection in a single differentiable model. The
strategy follows an autoencoder formulation, with
transmitter and receiver being learnt together as
neural networks that operate over simulated
channel degradations. This is tested on different
signal-to-noise ratio (SNR), and fade scenarios,
where more generalized performance and
robustness is exhibited than in traditional systems

2. RELATED WORK

The standard convention in the design of
conventional communication schemes has been
more of a model based design, but with the most
critical blocks modulation and detection being

designed separately, and using conventional
principles of signal processing. Seminal
modulation schemes such as Quadrature

Amplitude Modulation (QAM) and Phase Shift
Keying (PSK) combined with matched filter or
maximum likelihood demodulation scheme are
ideal in an Additive White Gaussian Noise (AWGN)
environment. Nevertheless, they considerably
beneath their performance in situations that have
fading channels, hardware non-linearities, dynamic
environmental degradation, which are common in
6G settings.

To address these shortcomings, scientists have
looked at learning-based detection techniques
involving the use of deep neural networks (DNNs),
and convolutional designs. As an example, Ye et al.
[1] have suggested DL-based signal detector in an
OFDM application, and O Shea and Hoydis [2] have
shown that neural networks may achieve near-
optimal performance in the absence of channel
modeling. Nonetheless, the modulation formats are
often treated as fixed in these studies and thus as
an unfortunate side effect, they cannot be very
flexible and do not get the absolute best out of end-
to-end learning. Following on this idea, an
autoencoder-based  architecture  has  been
proposed as a promising paradigm here the whole
communication chain (transmitter, channel, and
receiver) is viewed as a differentiable whole. DV
training With each other The training of
modulation and detection was initially done
together by Dorners et al. [3] in the structure of an
autoencoder. Their results demonstrate that the
pattern of such architectures are able to learn non-
linear channel modulation constellations as well as
adaptive decoding techniques.

Nevertheless, existing models have not fully
evolved over scalability, interpretability and
multigeneralization across different channel
conditions. Current methods cannot easily fit in
high-dimensional, diverse, real-time wireless
settings because they are constrained to easy
channel models or small message space.
Additionally, not all models have the ability to
dynamically change with the presence of the

channel during inference that is paramount in real-
world application of models.

3. System Model

This part shows the architecture of the proposed
end-to-end deep learning system that learns
together modulation and detection as a concerted
problem. The whole physical-layer communication
system is a modeled autoencoder neural network,
and all parts of the communication system, such as
the transmitter (encoder), and the channel (noise
and fading simulation), and the receiver (decoder)
are differentiable parts that are optimized using
backpropagation.

3.1 Communication as an Autoencoder
In conventional communications, the transmit and
the receiver have separate design and optimization
protocol. Conversely, under our model, it is also
possible to view communication process as an
autoencoder, with the encoder modeling the
transmitter, the channel layer modeling realistic
channel conditions, and the decoder modeling the
receiver.

¢ Encoder (Tx Network): Given a k-dimensional
binary input vector x k {0,1}k (the source
information) encodes it into a continuous-
valued signal, in the complex domain. The
output vector is understood as modulated
symbol that is able to be transmitted through
air.

e Channel Layer: Jadds impairments that include
Additive White Gaussian Noise or (AWGN),
Rayleigh or Rician fading, as well as non-linear
distortions (like amplifier clipping). This layer
is entirely differentiable and thus gradients can
roll back during training.

e Decoder (Rx Network):Gets the noisy copy of
the transmitted symbol and recreates the
original bit pattern. It is constructed goal to
reduce the loss between the original and
decoded bits (e.g., cross-entropy).

Such autoencoder structure enables a system to

concurrently optimize mappings to flooding and

detection tasks end-to-end in supervised fashion.

3.2 Neural Architecture

The autoencoder has deep neural elements that are

flexible to adapt to different sizes of inputs,

channel state, and task needs.

e Transmitter Network: Encoder is a sequence of
fully connected (dense) layers, a batch
normalization and other separate unique
modulation layers. The layers make sure that
the output signal meets power requirements
and has a constant constellation energy,
approximating realistic modulation.

e Channel Model Layer: This module is realised
as a parameterised and modulated simulation
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block. It accommodates
channels:

o AWGN: Noise addition.

o Rayleigh Fading: multiplicative complex
coefficients of fading.

o Rician Fading: Line-of-sight component
that has a specifiable K- factor.

o Non-linear transformations, which model
impairment of hardware devices, are
optional.

e Receiver Network: The decoder can be fitted
by employing Multi-Layer Perceptron (MLP) or
alternatively Convolutional Neural Network
(CNN) that use structured input. The last layer
is a softmax classifier that supplies the

many kinds of

posterior probability of each potential bit

vectors and enables the highest likelihood-

based decision-making.
Such end-to-end architecture enables the model to
configure its own code constellation shape,
decoding policy and error-robust mapping based
only on training data, without requiring any prior
communication algorithm design. This yields a
naturally-adaptive-to-channel variantity system,
which is ideal to roll out in next-generation
intelligent 6G radios. The complete
communications end to end pipeline as an
autoencoder consisting of neural blocks of a
transmitter, channel, and a receiver is depicted in
Figure 1.

( ) ( 1\ { 3
Transmitter Channel Receiver
Encoder > Channel > Decoder
(Tx Network) Layer (Rx Network)
\_ J N\ J
« AWGN
Complex * Fading Noisy
symbols * Impairments symbols
y . = v
Input bits Output bits

Figure 1. End-to-End Autoencoder-Based Communication System.

The Tx network sends input bits into sophisticated
symbols. The channel level adds impairments like
AWGN and fading as well as noise. Through deep
learning, noisy symbols are decoded and
transformed into output bits by the receiver (Rx
network).

4. Problem Formulation

Context To allow collaborative learning of
detection and modulation, we formulate
communication system at the physical layer as a
differentiable autoencoder. The aim is to configure
the model end-to-end such that information can be
encoded and decoded by the transmitter and
receiver neural networks over a potentially non-
linear noisy channel with little error.

Let x € {0,1}k represent a binary input vector of
length k, corresponding to a message to be
transmitted. The transmitter neural network fj ,
parameterized by 6, encodes this input into a
continuous-valued complex vector s € C», which
represents the modulated signal:
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The modulated signal s is then subjected to a
channel model h (), whose stochastic
transformations include additive white Gaussian
noise (AWGN), Rayleigh or Rician fading and
optional hardware impairments:

The receiver neural network go, parameterized by
¢, attempts to reconstruct the original input x from
the distorted observation y, producing an estimate
x"=gd(y), where x"€[0,1]k denotes soft
predictions over the binary message space.

The model is trained in a supervised manner by
minimizing the cross-entropy loss between the

input vector xxx and its reconstruction x”:
k

L(6,d) = — in log (x;) — — — — — — — —
i=1
-(3)
This objective ensures that the reconstructed bit
probabilities x*i match the ground truth bits x;,
effectively driving the system to learn both robust

modulation (encoding) and signal recovery
(decoding) strategies under noisy channel
conditions.
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Importantly, the optimization is end-to-end, or
gradients are calculated and propagated through
the whole system, to the differentiable channel
layer. It enables the transmitter and receivers
networks to jointly coordinate their encodings
according to channel properties resulting in better
coordinated joint optimization compared to the
separate training of the different components. The
formulation does not only reflect the stochasticity
of real world wireless settings but also allows
generalizing its model across the SNR regime and
fading profiles, which is why it is immensely
applicable to adaptive and intelligent transceivers
in a future 6G network.

Training:
Supervised learning with

stochastic gradient
descent (Adam)

Channel Models:

AWGN, Rayleigh fading,
and composite fading +
non-linearity

5. Experimental Setup

In order to test the usefulness of the suggested
end-to-end deep learning-based communications
structure, we discuss a set of simulation-based
tests in a variety of channel and systems
conditions. Training methodology, the generation
of the dataset of the channel configurations, and
the settings under which the evaluations are made,
and the baseline schemes under which they are
compared are outlined in this section. The main
elements of the experimental design such as the
training scheme, design of the datasets, channel
models and baselines comparison are outlined in
Figure 2.

Dataset:

Randomly generated bit
sequences of length k=4
and 8

Baseline Comparison:

BPSK, QAM with ML
detection, and DL-based
detection-only models

Figure 2. Overview of Experimental Setup.

The experimental settings consist of guided
training with the Adam, binary and independent,
randomized input sequence, and a multi-channel
model (AWGN, Rayleigh, and composite fading) as

well as comparisons with conventional and
learning-based baselines
5.1 Training Procedure
Training of the system involves supervised

learning in which an input of bit sequences is
trained to the model so it can learn to reconstruct
the same after passing it via a simulated channel.
The entire network of the transmitter, the channel
model and the receiver is being trained with the
help of the Adam optimizer, a derivative of
stochastic gradient descent (SGD), which is also an
ideal optimization tool in training the non-convex
neural networks. The batch size and learning rate
are also chosen empirically in order to achieve
convergence and generalisation.

5.2 Dataset Generation
When there are various sizes of the message block
(k = 4 or 8), these are produced as binary vectors

of size k (k=4 or 8) using random generation. The
individually treated message classes are each bit
sequence. Every input message is modulated into
signal by the transmitter, which suffers corruption
due to the channel impairments after which is then
decoded wusing the receiver network. This
arrangement enables the system to adapt a
common encoding-decoding procedure suited to
the transmitting conditions.

5.3 Channel Models

To test the viability of the proposed system in

reasonably real environment we simulate wireless

channel models of different types:

e  Additive White Gaussian Noise (AWGN): The
AWGN model simulates the thermal noise that
is of zero mean and the variance is governed
by the SNR.

e  Rayleigh Fading: Rayleigh fading is a model of
multipath fading that includes no line-of-sight
component and is found in an urban
environment.

¢  Composite Channel (Fading + Non-Linearity):
Non-MeanRC with fading and with non linear
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hardware distortion effects (e.g. clipping,
compression non linearities), this should be
considered a more difficult problem to solve
than either of the other problems alone.
Such channels are used as differentiable layers,
allowing a  training  process to  use
backpropagation.

5.4 SNR Conditions

Signal-to-Noise Ratio (SNR) is swept over 0 dB to
20 dB at 2 dB equipments. It trains the model at
various SNRs to promote the model to be very
general and robust. Performance values are
computed over many runs and bit realizations such
that they are statistically significant.

5.5 Baseline Models

The comparison of the proposed end-to-end model

is done with following baselines:

¢ BPSK ML: An old low order modulation scheme
in optimal detection under AWGN.

¢ QAM & MA Detection: H o modulation tested
under optimum detection, which is typical of
contemporary wireless networks.

e DL-Based Detection-Only Models: Neural
network detectors which work separately of the

modulation scheme as suggested in previous
articles [1][2].
The baselines give the benchmarks against which
the benefits of integrating optimization through
end-to-end learning are measured.
It is a complete experimental setting and can make
a fair and rigorous comparison of the proposed
architecture with conventional and learning-based
systems in different channel conditions and level of
system complexity.

6. Results and Analysis

In this part, the performance assessment of the
proposed joint modulation-detection end-to-end
Deep learning architecture will be examined
against different channel conditions. The major
parameter of interest is the Bit Error Rate (BER)
that is used to measure the accuracy of the symbol
reconstruction at the receiver. These outcomes are
compared with standard modulation formats and
the top research learning-based detection
algorithms.

6.1 Bit Error Rate (BER)

Table 1 reports the BER performance at a
representative SNR of 10 dB across different
channel models:

Table 1. Bit Error Rate (BER) Performance at 10 dB SNR for Different Detection
Methods and Channel Types

Method Channel Type BER @ 10 dB
BPSK + ML Detector AWGN 1.5x103
QAM + ML Detector Rayleigh 4.8x102
DL Detection Only Rayleigh + Nonlinearity | 3.1x10-2
Proposed (End-to-End) | Rayleigh + Nonlinearity | 1.8x10-2

These findings shed a lot of light on various issues:

¢  The conventional BPSK system works best at
a linear AWGN channel because it is
optimized in a noise dominated setting.

. Fading channels, in particular Rayleigh fading
has a severe impact on the performance of
QAM with ML detection as channel diversity is
not used.

e The detection-only detection-based strategy
has advantages and disadvantages: (a) the
resilience to fading and non-linear distortions
is enhanced in the deep learning (DL)-based
version; (b) such strategy suffers from the
fixed modulation schemes to which it is
restricted.

e The advantages of jointly optimizing a
modulation/detection pair (the proposed

end-to-end (E2E) model) can clearly be
observed when optimized across the entire
model (modulation and detection) by
providing consistent BER performance gains
compared to a separate modulation and
detection optimization across all the most
challenging scenario (Rayleigh + non-
linearity). Here, it shows that the end-to-end
trained model has learned to represent an
optimal signal that can fit well within the
channel even in a most challenging scenario.
Figure 3 demonstrates the BER performance of the
suggested end-to-end model in comparison with
the conventional baselines within a range of SNR
values.
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Bit Error Rate (BER)

10-3F

BPSK + ML Detector (AWGN)
—=— QAM + ML Detector (Rayleigh)
—=— DL Detection Only (Rayleigh + NL}
Proposed End-to-End (Rayleigh + NL)
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Figure 3. BER vs. SNR Comparison of Detection Methods.

Compared with both conventionally used
BPSK/QAM schemes and combinations of DL
detection only models, the end-to-end deep
learning model proposed outperforms
conventional BPSK / QAM schemes, and is
significantly better than detection-only models
under Rayleigh fading and non-linear channel
conditions.

6.2 Generalization Capability

Generalization to unknown or varying channel

conditions is one of the key features of any

communication system. The given model, in this

respect, has a high degree of generalisation in

several environments:

¢ A model trained on AWGN only is seen to
perform moderately well on Rayleigh fading
channels without retraining suggesting
learned resilience in encoding techniques.

¢ As adjusted to channel impairments (e.g.
Rayleigh + non-linearity), the model
generalizes to those sound paths, uses 0.5 of a
minute to learn rapidly and outperforms DL
detection-only-based models with BER
enhancements beyond 40 percent when
adjusted to channels.

This establishes that the architecture in question

can be used as building blocks toward adaptive,

and learning-based physical layer solutions in the

6G systems that can excel under realistic, less-

than-ideal channel conditions.

7. DISCUSSION

The experimental finding simply proves the merits
of the E2E learning in the design of physical layer
communications systems especially in the
demanding 6G wireless conditions. Modeled
differently than the traditional systems deploying
modulation and detection as a discrete parts of
independently designed modules, the proposed
scheme provides joint optimization of the two
parts based on a unified deep learning framework.

That substantially decreases the degree of manual
feature engineering or an expert basis on signal
design, permitting a data-driven and adaptive
transmission strategy. The capability of the model
to learn constellation mapping that is naturally
noise-invariant, as well as multipath-fading-
invariant as well as non-linear hardware
distortion-tolerant, is one of its main strengths.
These  learned-representations are  unlike
traditional modulation schemes such as QAM or
PSK of course and are optimized specifically within
a given channel environment toward an optimal bit
error rate (BER). This flexibility is especially useful
in 6G networks where the channel conditions may
change fast because of the high mobility, and
densification deployment practices, and the use of
non-terrestrial infrastructures.

The cost of training is moderate in terms of

computational overhead, mainly driven by the

necessity of backpropagation through channel
model and deep architectures, but the inference of
the trained network is lightweight and real-time,
compatible, which is why the system may be
applied in practice to embedded or edge devices.

Moreover, it can fine tune or retrain the model by

using small quantities of real world data and

thereby extend its performance and generalization
ability without a complete re-engineering.

Moving forward, in the proposed architecture,

there are a handful of extensions that can be done

to it:

¢ Techniques of reinforcement learning can be
introduced to allow dynamic environments
without explicit labels where learning can be
performed online due to changes in the
environment.

e Training and quantization adapted to
hardware might ensure the system is
adaptable to low-precision devices, such as
those used in the Internet of Things or RF
front-ends.
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¢ Cross-frequency band, cross-channel, or
cross-use case transfer learning and domain

adaptation approaches may speed
deployment.
Such improvements would make the end-to-end
learned communication systems a strong

foundation of self-optimizing intelligent 6G

transceivers that can fulfill the high requirements
of future wireless networks. Future work shall then
have dynamic adaptation, efficient deployment,
and  generalization  within = communication
environments (as defined in Figure 4) as the future
work.

End-to-End Learning in Communication

Systems: Future Enhancements

\A

Integrating
Reinforcement
Learning for
Dynamic
Adaptation

l

Train adaptive
policies for
dynamic

environments devices

Hardware-Aware
Training and
Quantization

Optimize neural
networks for
constrained

\2

Transfer Learning
Across Scenarios

l

Accelerate
deployment in new
communication
contexts

Figure 4. Future Enhancements for End-to-End Learning in Communication Systems

This flowchart points out the major future courses
of action in regards to the enhancement of end-to-
end deep learning models in wireless
communication. It makes adaptive-decision
learning possible with reinforcement learning, and
makes training amenable to deployment on
restricted hardware with hardware-aware training
and transfer learning to facilitate rapid adaptation
to a wide variety of communication situations.

8. CONCLUSION AND FUTURE WORK

The paper suggested the application of end-to-end
deep learning architecture in joint signal detection
and modulation in 6G wireless networks.
Representing the physical layer communication
pipeline as a model of autoencoder, the system is
trained to optimize simultaneously the functions of
the transmitter and receiver, thus making robust
and adaptive communication possible against the
channel impairment such as noise, fading, and non-
linear distortions. The model was tested across
different signal-to-noise levels and different
channels and has a major advantage on the bit
error rate (BER) that is orders of magnitude lower
than conventional modulation methods such as
BPSK, QAM yet comparable to full-deep learning
methods that analyze the detection and the
channel.

The main contributions of this work consist in:

¢ Development of end-to-end differentiable

communication system to remove separate

designing of the modulation block and the
detection block.

e A shared learning structure which is flexible to

the channel attributes and can have good

generalization on the various types of channels.

e Extensive simulation based testing confirming

effectiveness of the model in AWGN as well as

Rayleigh fading channel and particularly in the

presence of nonlinear distortions.

Moving on to the prospects, there are a number of

interesting lines of research identified:

e Extended MIMO Multi-user MIMO for
managing space multiplexing and the
interference between users within the dense
6G environment.

¢ Non-coherent detection combination to lessen
reliance on more clear channel state
knowledge, important in high-mobility or low-
latency applications.

¢ Deployment of hardware on software-defined
radios (SDRs) to establish the viability of real
time inference and training in real world
systems.

e Federated or on-line learning systems to
facilitate edge-based training without any
centralized retraining.

Future improvements will go

realization of intelligent,

towards the
self-optimising
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transceiver systems that achieve the 6G and
beyond targets of ultra-reliability, adaptability and
efficiency.
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