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The leakage power has become a major performance blocker in the
extreme power-constrained System-on-Chip (SoC) implementation
process, especially of always-on functionalities in Internet of Things
(IoT) and edge-Artificial Intelligence (AI) apps. The traditional
approaches to power gating can be quite useful in terms of reducing the
power consumption in a static state, yet they tend to be not so flexible in
terms of workload and environmental changes, which is necessary at
real-time. In order to overcome this drawback this paper proposes an
adaptive power gating architecture incorporating Switched-Capacitor-
Assisted Power Gating (ScPG) and on-chip machine learning (ML) to
suppress leakage more effectively. The proposed system has lightweight
ML models to constantly scan the existing runtime parameters like
activity level, temperature, and leakage trends and matches to
dynamically tune ScPG configurations i.e., timing, capacitor engagement,
and sleep signal duration. As simulated on a 28nm FD-SOI CMOS
process, the proposed architecture has up to 47% leakage power
savings over the conventional header-based gating architectures, and
less than 5 percent area overhead and sub 50ns decision latency. These
findings show that the suggested ML-based ScPG method can provide a
feasible, energy-conscious substitute of power management in energy-
scrimpy SoCs. The approach enables scalable context-aware power

provision systems in the next-generation edge computing systems.

1. INTRODUCTION

Ultra-low-power System-on-Chip (So()
architectures will emerge as essential in power-
constrained forms of computing in the pervasive
computing era including wearable electronics,
biomedical implants, and Internet of Things (IoT)
edge nodes. These applications require full time
operation and they operate frequently under
energy constrained conditions, leading to the need
of draconian power conservation techniques at
each stage of the design stack. The energy
consumed by the system in the idle mode has
become a major concern in dissipating power and
is known as leakage power, among some other
sources of dissipated power.

In a bid to reduce leakage, power gating has been
popular in the design of digital SoCs. Header or
footer power gating is a common technique of
conventional power gating power gating used to
disconnect blocks of idle state to the power or
ground in order to eliminate the path to leakage.
Although these schemes are effective, they create
limits such as wake-up latency, voltage droop and

ground bounce. Switched-Capacitor-Assisted
Power Gating (ScPG), where power supply
transitions are absorbed by a decoupling capacitor,
has been suggested to overcome some of these
limitations, resulting in an improvement in energy
on wake-up, and in a more gradual recovery of the
voltage. But these ScPG techniques are statically
allocated at design time rather than optimized to
real-time fluctuations of a workload, or
environmental changes including temperature and
voltage variations.

Regardless of recent attempts to introduce the
adaptive mechanisms into power management, the
prospect of incorporating fine-grained intelligent
runtime control into power gating has not been
explored. More specifically, machine learning (ML)
that has demonstrated considerable potential in
dynamic voltage and frequency scaling (DVFS),
thermal management, and workload forecasting
has not been sufficiently utilized in adaptive
control of switched-capacitor-based power gating.
This introduces a great hole in the existing
literature because any static policy of power gating
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does not take advantage of the contextual
opportunities to use more aggressive means of
reducing leakage without a drop in performance
and reliability.

This research arises due to an increased interest in
self-regulation and contextual power management
in edge systems, where the main concerns are the
battery lifetime and power consumption.
Embedded ML models of very low overhead now
enable on-chip intelligence, and on-chip
intelligence has become practical, even in the
smallest resource-constrained SoCs, allowing a
new level of real-time learning-based control.
Realisation of this capability in adaptive power
gating has the potential to open up a new breed of
ultra-efficient, self-optimising SoC architecture.
Thus, this paper suggests a new architecture
through the integration of Switched-Capacitor-
Assisted Power Gating (ScPG) with on-chip
Machine Learning (ML) to build adaptive in-real-
time likeage control system. The main goal is to
come up with an ML engine that is hardware ready
and able to make dynamic decisions regarding
power gating options according to real-time
workloads and environmental variables. Also the
work will be designed towards creating a
reconfigurable circuit of ScPG in such a manner
that can be smartly switched to switch the
capacitor banks and sleep control timings in order
to reduce the leakage power as well as the
overheads of wake up. To test its feasibility in
practice, the proposed method of ML-assisted ScPG
system is implemented and tested in the 28nm
CMOS SoC testbench under the scenario of the
realistic IoT workload. Lastly, the study explores
the trade-offs among area, latency, and power
savings where the proposed approach was
benchmarked against both the traditional
approach and the static approach to ScPG. By
overcoming weaknesses of the current power
gating technologies, this contribution makes a
breakthrough in the energy-aware SoC design area,
specifically of ultra-low-power and always-on in
the contemporary edge computing environment.

2. RELATED WORK

Power gating Power gating refers to a mature
leakage-reduction scheme within CMOS circuits
especially in standby modes. The header/footer
sleep transistor implementations are the most
pervasive, in which transistor blocks not in use are
disconnected to the power source or ground, and
thereby eliminated as a source of static current
paths. Although they work well, there are some
disadvantages of these methods, including ground
bounce, voltage droop and wide wake-up latencies
particularly during dynamic workloads. The
integration of power gating to digital SoCs was
pioneered by foundations such as Splitting

architectures and power domain [1] and Sub-
threshold presence [2] of the works of Rabaey et
al, and Muto et al., respectively, which introduced
and applied the concept of sleep-mode transistors
and sleep-mode power domain within the design
flow of digital SoC using UPF.

As solutions to some of the wake-in-efficient
problems of conventional gating, Switched-
Capacitor-Assisted Power Gating (ScPG) has been
introduced. In ScPG, decoupling (a.k.a switched
capacitors) which is strategically placed inside the
power path buffers the ramp-up voltage during
power-up, minimizing IR drop and restraining
peak current transients. This strategy was
explained alongside Shih et al. [3] who showed that
ScPG architectures have the capability to reduce
wake up energy with similar levels of leakage
suppression. Nevertheless, when the capacitor
networks are placed in a static state, they would
not be able to work properly under different
workloads and environmental factors, including
temperature and process corners.

Over the past few years there have been some
exciting new developments in machine learning
(ML)-aided power management, which could
change how power states are optimized
dynamically and on a per-runtime basis. As an
example, a framework introduced by NVIDIA called
PRIMAL [4] used supervised learning models to
make inferences of block-level power consumption
at the RTL level. Equally, ML models were used in
dynamic voltage and frequency scaling (DVFS) [5],
thermal prediction [6], and the workload-based
scheduling of SoCs. Such methods prove that
hardware-based real-time inference via ML can be
used to make real-time decisions regarding power,
with any particular choice (decision tree or
perceptron) suitable to embedded environments.
Nevertheless, the existing work is the lack of the
efforts where on-chip machine learning could be
used to adjust ScPG parameters on-the-fly. The
modern methods of ScPG are quite stagnant and
not intelligent enough to be able to determine the
system state or leakage patterns and subsequently
able to adjust capacitor banks, timing and power-
down sequences. This is a major area of research
gaps, in light of the growing use of always-on
compute modules in [oT and edge Al systems,
where efficient energy usage heavily depends on
the ability to perform adaptive control.

This paper bridges this divide by presenting a
proposal of ML-augmented Switched-Capacitor
Power Gating architecture, wherein on-chip ML
engine carries out real-time optimisation of power
gating strategy, using live workload and leakage
measurements. The idea is to allow low-latency
streamlined context-aware leakage control
placement with the lowest overhead in terms of
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area and power consumption, that of any ultra-
low-power SoC designs of the next generation.

3. Proposed Architecture

3.1 System Overview

The suggested system is based on a tightly coupled
control loop which dynamically optimize power
gating configurations in a bid to reduce leakage
power in ultra-low-power SoCs. The main feature
of this loop is an on-chip ML-aided decision-
making engine and working together with a real-
time activity monitor and a reconfigurable
switched-capacitor power gating controller. The
activity monitor constantly characterizes all the
important metrics at the system-level which
include block utilization patterns, switching and

leakage current behavior. These measurements are
fed into the on-chip machine learning inference
engine, using lightweight models e.g. such as
decision trees, linear regressors optimized to run
in an embedded system (e.g. TinyML-compatible).
According to the model inference, the system
dynamically optimizes the ScPG controller, tuning
its important parameters of the control of time of
the sleep control signals, number of switched
capacitors that are active in the network and the
time of the discharge/recovery phases. With such
closed-loop control, power gating parameters can
be adjusted in real-time, and context-wise, and the
system can always be kept at its optimum to
leakage repression without additionally wasting
power.

ScPG Controller 3 I

« Capacitor contig
* Timing control

T

» Sleep signal
Activity Monitor Pomfer gating ¥ I _{
« Module activity decision L

« Lenkage rate
« Temperature

ML

Switched Capacitor
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Target
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Gated power
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Figure 1.High-Level Architecture of the Proposed ML-Assisted Switched-Capacitor Power Gating System.
The on-chip ML engine dynamically configures the ScPG controller based on real-time system features,
enabling adaptive leakage control in ultra-low-power SoCs.

3.2 Switched-Capacitor Module
Switched-Capacitor Power Gating (ScPG) module
constitutes the physical spine of the suggested
leakage suppression mechanism. As compared to
the classic header-based gating that simply
deconnects power rails during power-off states,
the ScPG module takes advantage of an
interconnected array of charge-storage capacitors
that can smooth out the voltage transition during
events of power down and up. These capacitors are
put in reconfigurable bank architecture, so that
their amount which operates in the same time may
be tuned to a fine grain scale.
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This is reconfigured dynamically, by the ML engine.
As an example, when minimum wake-up latency is
needed or low-leakage conditions occur, fewer
capacitors activate to minimize energy overhead.
In contrast, upon leakage conditions (high
leakage), the system has the ability to interact
more capacitors and can manipulate their phase
alignment to improve voltage transitions, ground
bounce and transient leakage spikes. Each
capacitor has their charge/discharge behavior
real-time modulated and the system can
dynamically tailor its power gating patterns in
response to live feedback, rather than having to
pre-program a set of fixed modes.
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Figure 2. Capacitor Bank Switching Timing Diagram

It shows the activation windows of three individual
capacitors (C1, C2, C3) over time:

e (lis activated during 1-3 ps and 6-8 ps,

e (C2is active from 2-5 ps,

e (3isengaged between 4-7 ps.

3.3 ML Engine

This architecture is centered on the on-chip ML
engine that acts as the foundation of the adaptive
behavior. It is the architecture to implement fast,
accurate decision that keeps hardware overhead at
a minimum, which fits a permanently-on module
into an ultra-low power system. The model works
on the features it gets out of the activity monitor
i.e., leakage rate, module activity level, temperature
of ambience and supply voltage. These are chosen
to be highly correlated with leakage power and via
the circuit behavior as the operating conditions
vary.

The ML model is made small to make it feasible in
hardware, so it is trained offline on labeled
simulated workload data, and can be a decision
tree, a single-layer perceptron (SLP). After training,
the model is quantized and synthesized with the
help of TensorFlow Lite or OpenMLSys tools. This
gives the resulting inference engine to be
embedded in the SoC and have a latency of less
than 50 ns per inference cycle with less than a
1.2% power overhead compared to the overall
module power budget. That enables making the
frequent run-time adjustments without a

significant decrease in the overall energy efficiency
of the system.

The proposed architecture can make adaptive
intelligence available to power gating because
intelligent inference and reconfigurable hardware
control are combined, and it creates a scalable
approach and provides a highly efficient solution to
modern SoCs involving edge and IoT applications.

4. METHODOLOGY

4.1 Design Flow

The implementation of the suggested ML-
enhanced Switched-Capacitor Power Gating (ScPG)
system has a formatted, multiple-process
hardware-software co-design approach. The
Synopsys Design Compiler is utilized at the
hardware design level that includes the logic
synthesis of the ScPG circuitry and control logic
and the Cadence Virtuoso and Innovus are utilized
in the transistor-level simulations, physical layout
and power analysis. Such tools used in the
industry, will satisfy area, timing, and power
requirements needed by the ultra-low-power
system on the architecture synthesized.

Figure show Hardware-software co-design flow of
the proposed ML-aided ScPG. It is performed by
logic synthesis in Design Compiler, ML model
development and quantization in Python,
simulation and layout with Cadence Virtuoso and
Innovus, hardware synthesis through TensorFlow
Lite/OpenMLSys, and finally integration into the
ScPG controller to verify it.
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Figure 3.Design Flow for ML-Assisted Switched-Capacitor Power Gating System

Software-wise, machine learning model is trained
and created with Python-based frameworks, e.g.
Scikit-learn or TensorFlow, which would operate
on a dataset yielded in large-scale SoC-level
simulations. The dataset encompasses significant
characteristics of activity factor, leakage current,
supply voltage, and temperature variation under
various scenarios of functions and different
degrees of workloads. Techniques in supervised
learning are used to generate small models, mostly
decision trees or single-layer perceptrons, able to
predict values of the optimal power gating
configuration in real-time.

Following training and validation, the ML model is
quantized and is made hardware-ready on one of
the platforms such as TensorFlow Lite for
Microcontrollers or OpenMLSys. The procedures
adopted in this step involve converting to a fixed-
point representation, pruning, and compressing
the model so as to minimize the number of logic
gates and inference latency. The last ML inference
logic is synthesized and merged with the ScPG
controller into the SoC design, making a very
smooth way of closed-loop power management.
The dynamics of working with the ML engine,
activity monitor, and ScPG circuitry are correctly
checked and validated using post-synthesis
simulations.

4.2 Simulation Setup

The simulated architecture is compared by
performing comprehensive simulations on a
qualified 28nm FD-SOI CMOS, with outstanding
leakage figures and body-biasing capability that is
suitable to low power applications. The testing
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platform contains an always-on battery of useful
blocks that would go into an Al-enabled edge SoC,
this would include a wake-word detection engine, a
sensor data processor, and an
encryption/decryption block. These blocks depict
real-life usage scenarios in which modules have to
stay at least inactive or wake when idle rapidly in
reaction asynchronous events. Real-time workload
traces and synthetic traffic patterns that simulate
the changing operational conditions give
simulation inputs. These are changes between the
active, idle and the sleeping modes in dynamic
temperature and voltage scaling conditions. Three
architectures are compared against the
benchmarks: (1) the traditional header-based
power gating architecture, (2) architecture
implementing ScPG configured at compile time and
(3) the proposed ML assistance-based adaptive
ScPG.

Key performance
simulation include:
e Leakage current reduction (pA or %),
Wake-up energy (p]),

Area overhead (mm? or %),

Latency of ML inference and capacitor
switching response (ns),

Power overhead of the ML engine (% of SoC
or module power).

The simulation output is presented statistically so
as to determine the performance of the suggested
framework in the varying workloads and process
corners. All comparisons are done at iso-functional
and iso-frequency level to make it fair that energy
and area efficiency are compared.

metrics collected during
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Table 1. Key Performance Metrics Used in Evaluation

Metric Unit Description

Leakage Current Reduction pA or % Reduction in standby leakage compared to
baseline gating techniques

Wake-Up Energy pJ Energy consumed during transition from sleep to
active mode

Area Overhead mm? or % Additional chip area introduced by ML engine

and ScPG control logic

Inference & Switching Latency | ns

Time required for ML model decision and
capacitor reconfiguration

ML Engine Power Overhead % of module/SoC

Power consumed by ML engine as a percentage of
overall module or SoC power

5. RESULTS AND DISCUSSION

In order to judge the efficiency of the suggested
ML-assisted Switched-Capacitor Power Gating
(ML-ScPG) architecture, a full range of post-
synthesis  simulations and studies were
undertaken. The proposed system was marked
against two comparison techniques, a conventional
Header-Based Power Gating (PG) and Static

Switched-Capacitor Power Gating (ScPG). Finally,
the three configurations were benchmarked under
the same SoC functional blocks and operating
conditions with focus on these main metrics:
leakage power, wake-up energy, area overhead and
adaptivity.

5.1 Comparative Results

Technique Leakage Power | Wake-Up Energy | Area Overhead | Adaptivity
Traditional PG Baseline High Low Static
Static ScPG -28% Medium Medium Static
ML-ScPG (Proposed) | -47% Low +5% Dynamic

Section (Results) Discusses the results obtained
with the proposed ML-ScPG architecture showing
that it has reduced the leakage power by 47%
compared to conventional power gating and 19%
compared to static ScPG, proving the efficacy of
data driven, and run time gating decisions. In
addition, the wake-up power of ML-ScPG was the
least, among all others tried, which is attributed to
its intelligent adjustment of a capacitor
engagement and charged-discharged behavior
upon transitions of the states. The ML-ScPG
approach had very small area overhead which was
about 5 per cent but this can be explained by the
huge energy savings coupled with gains in
responsiveness. The extra space is largely due

100

80

60

Metric Value

40

20

0

Traditional PG

Static ScPG

to/placed by the on-chip ML processor and the
configurable capacitor bank, which was heavily
optimized to be small with a quantized inference
model and an efficient logic on how to use as little
capacitor as possible. Comparative analysis of
Traditional Power Gating, Static ScPG, and
proposed ML-assisted ScPG is done in the graph
below on four paramount scales, which are the
Leakage Reduction in terms of percentage, Wake-
up Energy in the terms of normalization, Area
Overhead in the terms of percent and Adaptivity in
the terms of qualitative score. ML-ScPG technique
shows a fair trade-off between leakage suppression
and adaptivity at reasonable area and energy
overheads.

Leakage Reduction (%)
mmm Wake-up Energy (Norm.)
= Area Overhead (%)
mmm Adaptivity (Score)

ML-ScPG (Proposed)

Figure 4.Comparative Evaluation of Power Gating Techniques Across Key Metrics
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5.2 Adaptive Behavior and Environmental
Robustness

One of the significant benefits of ML-ScPG is the
possibility to adapt the parameters of power gating
strategies dynamically to real-time conditions of
the system (switching activity, leakage,
temperature, and voltage variations). With a
latency of workloads inference less than 50 ns, the
embedded ML engine had been able to monitor
changes in workloads and adjust the ScPG
configuration accordingly. This flexibility led to not
just improved leakage suppression, but also wake-
up consistency in different thermal and process

45t

W w P
o [8)] o
T T T

Leakage Reduction (%)

N
9]
T

20T

L

corners, which is traditionally a problem for
conventional methods of over-design or
insufficient performance.

The robustness and analysis with temperature
variation (T -20 o C to 85 o C) and voltage scaling
(0.6V to 1.0V) demonstrated that ML-ScPG was
able to be consistent in performance, the corner
cases of the static configurations were reported to
have degraded control over leakage and long
latencies of wake ups. This assures us that the ML-
based power control allows fine-scale contextual
optimization, which significantly increases the
robustness of the power control system.

ML-ScPG
—=— Static ScPG

~20 0 20

40 60 80

Temperature (°C)
Figure 5a.Leakage Reduction vs Temperature (Left Plot)

e ML-ScPG consistently maintains ~45-47%
leakage reduction across the full temperature

e Static ScPG performance drops significantly at
temperature extremes, confirming limited

range (-20°C to 85°C), showing high adaptability
robustness.
ML-ScPG
60 [ —=— static ScPG
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Figure 5b. Wake-Up Delay vs Voltage (Right Plot)
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o ML-ScPG shows stable and low wake-up
latency (~20-23 ns), demonstrating fast
response.

o Static ScPG suffers from significantly higher
and more variable wake-up delays (~50-62
ns), especially at lower voltages.

5.3 Trade-offs
Considerations

Although there are benefits associated with the
ML-ScPG approach, there are trade-offs with this
method. The additional control complexity
demands a tight timing relationship among ML
engine, capacitor driver logic and sleep signal
controller. Also, one should be mindful not to

and Implementation

Traditional PG
60 —-- Static ScPG
—— ML-ScPG (Proposed)

50

401

301

Cumulative Energy (p))

20

10F

negate the energy savings through the cost of
power inference, but in this realization the
contribution to power of the ML engine was less
than 1.2 percent of the total power consumed by
the module, which is much less than the energy
savings attained.

Practically the ML-ScPG methodology will work
best with always-on or frequently-idling functional
blocks where the cost of the overhead is spread
over a period of time and the dynamic behavior is
also well modeled by the activity monitor. Even
with very short huses during which the processor
is not being utilised, a gating mechanism that is
simpler can be more efficient, as they require a
latency to control the run time inference.

3 8 10

Time (us)

Figure 6.Energy Consumption vs Time During Power State Transitions

5.4 Summary

In short, the suggested ML-ScPG system achieves
better leakage power, wake-up quality with little
area augmentation. The combination of on-chip ML
makes the solution scalable and intelligent in
nature; it provides adaptation capability which can
be absent in a traditional and static system,
fulfilling the need to manage power and serve as
the solution to power in next-generation ultra-low-
power SoCs. These advantages promote the
proposed framework as a candidate that might be

useful in energy-sensitive edge Al-based
applications because it is a potential real-time
responsive and energy-efficient framework
solution.

6. CONCLUSION

This article proposed a new flexible power
management scheme that combines Switched-
Capacitor-Assisted Power Gating (ScPG) but
integrates it together with an on-chip machine
learning (ML) engine that helps to minimize power
leakage in ultra-low-power SoC. Using run-time
activity trace and the use of ML of low weight

inference, the proposed system is capable of
adapting power gating parameters--including
capacitor-get-involved and sleep-signal time in a
dynamically changing way as determined by the
nature of the workload and the environmental
conditions within the system. The proposed ML-
assisted ScPG technique was fully simulated
through a 28nm FD-SOI CMOS process and showed
as much as 47 percent leakage power reduction,
with reduced wake-up energy requirement and a
reasonably small area cost of 5 percent as
compared to conventional header-based and static
ScPG implementation. The system was also shown
to be resilient to temperature and voltage
fluctuations, which makes it suitable to the
deployment in always-on edge-Al and internet-of-
things devices, where energy efficiency, low-
latency wake-up, and flexibility are essential.

This work is important because it shows that
intelligent, runtime-controllable power gating is
indeed possible, and quite effective, and that it
represents a change in philosophy of leakage
control, as moving toward a form of context-aware,
real-time adaptation, with help of embedded
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intelligence, that is more general than the other
leakage-control techniques in the literature today.
The architecture establishes a basis of the 2G
energy-aware SoC architecture self-optimization
under a dynamic condition without human
resource and broadhand adjustments.

Prospective work will also focus on exploring the
applicability of more complex ML models like
reinforcement learning in order to enhance the
adaptive behavior and long term decision policies.
Also, we will focus on model-compression, in situ-
retraining and  hardware-friendly  feature
extraction to lower inference cost and in-field
continuous learning. Silicon Prototype or FPGA
compatible platforms will also be validated to
determine the possibilities of deployment in real
life.

In short, the work introduces a scalable and
intelligent framework to the problem of leakage
management in low-power systems and a new
opportunity of the co-design of microwire and
hardware mechanisms in SoC energy-constrained
scenarios.

7. FUTURE WORK

Further improvements to the planned framework
will be done by increasing its flexibility, speed, and
the practicality of the framework. A current
prospect that is being looked into involves
combining one which has the capacity to result in
self-adaptive, reward-based policy of decision-
making, which continuously changes as workloads
and systems conditions develop and change over
time by inserting a reinforcement learning-based
controller. The architecture as proposed can also
be optimised further through integration of
complementary methods in power management
like adaptive body biasing in order to realise an
even finer grained control of leaked power as well
as the dynamic power. Lastly, in order to certify the
correctness and effectiveness of the system in real
world deployment, hardware-in-the-loop (HIL)
implementation on field-programmable-gate-array
(FPGA) platforms will be undertaken. It will allow
assessing the ML-assisted ScPG framework in real-
time use in realistic workloads, opening the
prospect of future silicon prototyping and
deployment in commercial edge Al SoCs.
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