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 The leakage power has become a major performance blocker in the 
extreme power-constrained System-on-Chip (SoC) implementation 
process, especially of always-on functionalities in Internet of Things 
(IoT) and edge-Artificial Intelligence (AI) apps. The traditional 
approaches to power gating can be quite useful in terms of reducing the 
power consumption in a static state, yet they tend to be not so flexible in 
terms of workload and environmental changes, which is necessary at 
real-time. In order to overcome this drawback this paper proposes an 
adaptive power gating architecture incorporating Switched-Capacitor-
Assisted Power Gating (ScPG) and on-chip machine learning (ML) to 
suppress leakage more effectively. The proposed system has lightweight 
ML models to constantly scan the existing runtime parameters like 
activity level, temperature, and leakage trends and matches to 
dynamically tune ScPG configurations i.e., timing, capacitor engagement, 
and sleep signal duration. As simulated on a 28nm FD-SOI CMOS 
process, the proposed architecture has up to 47% leakage power 
savings over the conventional header-based gating architectures, and 
less than 5 percent area overhead and sub 50ns decision latency. These 
findings show that the suggested ML-based ScPG method can provide a 
feasible, energy-conscious substitute of power management in energy-
scrimpy SoCs. The approach enables scalable context-aware power 
provision systems in the next-generation edge computing systems. 
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1. INTRODUCTION 
Ultra-low-power System-on-Chip (SoC) 
architectures will emerge as essential in power-
constrained forms of computing in the pervasive 
computing era including wearable electronics, 
biomedical implants, and Internet of Things (IoT) 
edge nodes. These applications require full time 
operation and they operate frequently under 
energy constrained conditions, leading to the need 
of draconian power conservation techniques at 
each stage of the design stack. The energy 
consumed by the system in the idle mode has 
become a major concern in dissipating power and 
is known as leakage power, among some other 
sources of dissipated power. 
In a bid to reduce leakage, power gating has been 
popular in the design of digital SoCs. Header or 
footer power gating is a common technique of 
conventional power gating power gating used to 
disconnect blocks of idle state to the power or 
ground in order to eliminate the path to leakage. 
Although these schemes are effective, they create 
limits such as wake-up latency, voltage droop and 

ground bounce. Switched-Capacitor-Assisted 
Power Gating (ScPG), where power supply 
transitions are absorbed by a decoupling capacitor, 
has been suggested to overcome some of these 
limitations, resulting in an improvement in energy 
on wake-up, and in a more gradual recovery of the 
voltage. But these ScPG techniques are statically 
allocated at design time rather than optimized to 
real-time fluctuations of a workload, or 
environmental changes including temperature and 
voltage variations. 
Regardless of recent attempts to introduce the 
adaptive mechanisms into power management, the 
prospect of incorporating fine-grained intelligent 
runtime control into power gating has not been 
explored. More specifically, machine learning (ML) 
that has demonstrated considerable potential in 
dynamic voltage and frequency scaling (DVFS), 
thermal management, and workload forecasting 
has not been sufficiently utilized in adaptive 
control of switched-capacitor-based power gating. 
This introduces a great hole in the existing 
literature because any static policy of power gating 
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does not take advantage of the contextual 
opportunities to use more aggressive means of 
reducing leakage without a drop in performance 
and reliability. 
This research arises due to an increased interest in 
self-regulation and contextual power management 
in edge systems, where the main concerns are the 
battery lifetime and power consumption. 
Embedded ML models of very low overhead now 
enable on-chip intelligence, and on-chip 
intelligence has become practical, even in the 
smallest resource-constrained SoCs, allowing a 
new level of real-time learning-based control. 
Realisation of this capability in adaptive power 
gating has the potential to open up a new breed of 
ultra-efficient, self-optimising SoC architecture. 
Thus, this paper suggests a new architecture 
through the integration of Switched-Capacitor-
Assisted Power Gating (ScPG) with on-chip 
Machine Learning (ML) to build adaptive in-real-
time likeage control system. The main goal is to 
come up with an ML engine that is hardware ready 
and able to make dynamic decisions regarding 
power gating options according to real-time 
workloads and environmental variables. Also the 
work will be designed towards creating a 
reconfigurable circuit of ScPG in such a manner 
that can be smartly switched to switch the 
capacitor banks and sleep control timings in order 
to reduce the leakage power as well as the 
overheads of wake up. To test its feasibility in 
practice, the proposed method of ML-assisted ScPG 
system is implemented and tested in the 28nm 
CMOS SoC testbench under the scenario of the 
realistic IoT workload. Lastly, the study explores 
the trade-offs among area, latency, and power 
savings where the proposed approach was 
benchmarked against both the traditional 
approach and the static approach to ScPG. By 
overcoming weaknesses of the current power 
gating technologies, this contribution makes a 
breakthrough in the energy-aware SoC design area, 
specifically of ultra-low-power and always-on in 
the contemporary edge computing  environment. 
 
2. RELATED WORK 
Power gating Power gating refers to a mature 
leakage-reduction scheme within CMOS circuits 
especially in standby modes. The header/footer 
sleep transistor implementations are the most 
pervasive, in which transistor blocks not in use are 
disconnected to the power source or ground, and 
thereby eliminated as a source of static current 
paths. Although they work well, there are some 
disadvantages of these methods, including ground 
bounce, voltage droop and wide wake-up latencies 
particularly during dynamic workloads. The 
integration of power gating to digital SoCs was 
pioneered by foundations such as Splitting 

architectures and power domain [1] and Sub-
threshold presence [2] of the works of Rabaey et 
al., and Muto et al., respectively, which introduced 
and applied the concept of sleep-mode transistors 
and sleep-mode power domain within the design 
flow of digital SoC using UPF. 
As solutions to some of the wake-in-efficient 
problems of conventional gating, Switched-
Capacitor-Assisted Power Gating (ScPG) has been 
introduced. In ScPG, decoupling (a.k.a switched 
capacitors) which is strategically placed inside the 
power path buffers the ramp-up voltage during 
power-up, minimizing IR drop and restraining 
peak current transients. This strategy was 
explained alongside Shih et al. [3] who showed that 
ScPG architectures have the capability to reduce 
wake up energy with similar levels of leakage 
suppression. Nevertheless, when the capacitor 
networks are placed in a static state, they would 
not be able to work properly under different 
workloads and environmental factors, including 
temperature and process corners. 
Over the past few years there have been some 
exciting new developments in machine learning 
(ML)-aided power management, which could 
change how power states are optimized 
dynamically and on a per-runtime basis. As an 
example, a framework introduced by NVIDIA called 
PRIMAL [4] used supervised learning models to 
make inferences of block-level power consumption 
at the RTL level. Equally, ML models were used in 
dynamic voltage and frequency scaling (DVFS) [5], 
thermal prediction [6], and the workload-based 
scheduling of SoCs. Such methods prove that 
hardware-based real-time inference via ML can be 
used to make real-time decisions regarding power, 
with any particular choice (decision tree or 
perceptron) suitable to embedded environments. 
Nevertheless, the existing work is the lack of the 
efforts where on-chip machine learning could be 
used to adjust ScPG parameters on-the-fly. The 
modern methods of ScPG are quite stagnant and 
not intelligent enough to be able to determine the 
system state or leakage patterns and subsequently 
able to adjust capacitor banks, timing and power-
down sequences. This is a major area of research 
gaps, in light of the growing use of always-on 
compute modules in IoT and edge AI systems, 
where efficient energy usage heavily depends on 
the ability to perform adaptive control. 
This paper bridges this divide by presenting a 
proposal of ML-augmented Switched-Capacitor 
Power Gating architecture, wherein on-chip ML 
engine carries out real-time optimisation of power 
gating strategy, using live workload and leakage 
measurements. The idea is to allow low-latency 
streamlined context-aware leakage control 
placement with the lowest overhead in terms of 
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area and power consumption, that of any ultra-
low-power SoC designs of the next generation. 
 
3. Proposed Architecture 
3.1 System Overview 
The suggested system is based on a tightly coupled 
control loop which dynamically optimize power 
gating configurations in a bid to reduce leakage 
power in ultra-low-power SoCs. The main feature 
of this loop is an on-chip ML-aided decision-
making engine and working together with a real-
time activity monitor and a reconfigurable 
switched-capacitor power gating controller. The 
activity monitor constantly characterizes all the 
important metrics at the system-level which 
include block utilization patterns, switching and 

leakage current behavior. These measurements are 
fed into the on-chip machine learning inference 
engine, using lightweight models e.g. such as 
decision trees, linear regressors optimized to run 
in an embedded system (e.g. TinyML-compatible). 
According to the model inference, the system 
dynamically optimizes the ScPG controller, tuning 
its important parameters of the control of time of 
the sleep control signals, number of switched 
capacitors that are active in the network and the 
time of the discharge/recovery phases. With such 
closed-loop control, power gating parameters can 
be adjusted in real-time, and context-wise, and the 
system can always be kept at its optimum to 
leakage repression without additionally wasting 
power. 

 

 
Figure 1.High-Level Architecture of the Proposed ML-Assisted Switched-Capacitor Power Gating System. 

The on-chip ML engine dynamically configures the ScPG controller based on real-time system features, 
enabling adaptive leakage control in ultra-low-power SoCs. 

 
3.2 Switched-Capacitor Module 
Switched-Capacitor Power Gating (ScPG) module 
constitutes the physical spine of the suggested 
leakage suppression mechanism. As compared to 
the classic header-based gating that simply 
deconnects power rails during power-off states, 
the ScPG module takes advantage of an 
interconnected array of charge-storage capacitors 
that can smooth out the voltage transition during 
events of power down and up. These capacitors are 
put in reconfigurable bank architecture, so that 
their amount which operates in the same time may 
be tuned to a fine grain scale. 

This is reconfigured dynamically, by the ML engine. 
As an example, when minimum wake-up latency is 
needed or low-leakage conditions occur, fewer 
capacitors activate to minimize energy overhead. 
In contrast, upon leakage conditions (high 
leakage), the system has the ability to interact 
more capacitors and can manipulate their phase 
alignment to improve voltage transitions, ground 
bounce and transient leakage spikes. Each 
capacitor has their charge/discharge behavior 
real-time modulated and the system can 
dynamically tailor its power gating patterns in 
response to live feedback, rather than having to 
pre-program a set of fixed modes. 
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Figure 2. Capacitor Bank Switching Timing Diagram 

 
It shows the activation windows of three individual 
capacitors (C1, C2, C3) over time: 
 C1 is activated during 1–3 μs and 6–8 μs, 
 C2 is active from 2–5 μs, 
 C3 is engaged between 4–7 μs. 

 
3.3 ML Engine 
This architecture is centered on the on-chip ML 
engine that acts as the foundation of the adaptive 
behavior. It is the architecture to implement fast, 
accurate decision that keeps hardware overhead at 
a minimum, which fits a permanently-on module 
into an ultra-low power system. The model works 
on the features it gets out of the activity monitor 
i.e., leakage rate, module activity level, temperature 
of ambience and supply voltage. These are chosen 
to be highly correlated with leakage power and via 
the circuit behavior as the operating conditions 
vary. 
The ML model is made small to make it feasible in 
hardware, so it is trained offline on labeled 
simulated workload data, and can be a decision 
tree, a single-layer perceptron (SLP). After training, 
the model is quantized and synthesized with the 
help of TensorFlow Lite or OpenMLSys tools. This 
gives the resulting inference engine to be 
embedded in the SoC and have a latency of less 
than 50 ns per inference cycle with less than a 
1.2% power overhead compared to the overall 
module power budget. That enables making the 
frequent run-time adjustments without a 

significant decrease in the overall energy efficiency 
of the system. 
The proposed architecture can make adaptive 
intelligence available to power gating because 
intelligent inference and reconfigurable hardware 
control are combined, and it creates a scalable 
approach and provides a highly efficient solution to 
modern SoCs involving edge and IoT applications. 
 
4. METHODOLOGY 
4.1 Design Flow 
The implementation of the suggested ML-
enhanced Switched-Capacitor Power Gating (ScPG) 
system has a formatted, multiple-process 
hardware-software co-design approach. The 
Synopsys Design Compiler is utilized at the 
hardware design level that includes the logic 
synthesis of the ScPG circuitry and control logic 
and the Cadence Virtuoso and Innovus are utilized 
in the transistor-level simulations, physical layout 
and power analysis. Such tools used in the 
industry, will satisfy area, timing, and power 
requirements needed by the ultra-low-power 
system on the architecture synthesized. 
Figure show Hardware-software co-design flow of 
the proposed ML-aided ScPG. It is performed by 
logic synthesis in Design Compiler, ML model 
development and quantization in Python, 
simulation and layout with Cadence Virtuoso and 
Innovus, hardware synthesis through TensorFlow 
Lite/OpenMLSys, and finally integration into the 
ScPG controller to verify it. 
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Figure 3.Design Flow for ML-Assisted Switched-Capacitor Power Gating System 

 
Software-wise, machine learning model is trained 
and created with Python-based frameworks, e.g. 
Scikit-learn or TensorFlow, which would operate 
on a dataset yielded in large-scale SoC-level 
simulations. The dataset encompasses significant 
characteristics of activity factor, leakage current, 
supply voltage, and temperature variation under 
various scenarios of functions and different 
degrees of workloads. Techniques in supervised 
learning are used to generate small models, mostly 
decision trees or single-layer perceptrons, able to 
predict values of the optimal power gating 
configuration in real-time. 
Following training and validation, the ML model is 
quantized and is made hardware-ready on one of 
the platforms such as TensorFlow Lite for 
Microcontrollers or OpenMLSys. The procedures 
adopted in this step involve converting to a fixed-
point representation, pruning, and compressing 
the model so as to minimize the number of logic 
gates and inference latency. The last ML inference 
logic is synthesized and merged with the ScPG 
controller into the SoC design, making a very 
smooth way of closed-loop power management. 
The dynamics of working with the ML engine, 
activity monitor, and ScPG circuitry are correctly 
checked and validated using post-synthesis 
simulations. 
 
4.2 Simulation Setup 
The simulated architecture is compared by 
performing comprehensive simulations on a 
qualified 28nm FD-SOI CMOS, with outstanding 
leakage figures and body-biasing capability that is 
suitable to low power applications. The testing 

platform contains an always-on battery of useful 
blocks that would go into an AI-enabled edge SoC, 
this would include a wake-word detection engine, a 
sensor data processor, and an 
encryption/decryption block. These blocks depict 
real-life usage scenarios in which modules have to 
stay at least inactive or wake when idle rapidly in 
reaction asynchronous events. Real-time workload 
traces and synthetic traffic patterns that simulate 
the changing operational conditions give 
simulation inputs. These are changes between the 
active, idle and the sleeping modes in dynamic 
temperature and voltage scaling conditions. Three 
architectures are compared against the 
benchmarks: (1) the traditional header-based 
power gating architecture, (2) architecture 
implementing ScPG configured at compile time and 
(3) the proposed ML assistance-based adaptive 
ScPG. 
Key performance metrics collected during 
simulation include: 
 Leakage current reduction (μA or %), 
 Wake-up energy (pJ), 
 Area overhead (mm² or %), 
 Latency of ML inference and capacitor 

switching response (ns), 
 Power overhead of the ML engine (% of SoC 

or module power). 
The simulation output is presented statistically so 
as to determine the performance of the suggested 
framework in the varying workloads and process 
corners. All comparisons are done at iso-functional 
and iso-frequency level to make it fair that energy 
and area efficiency are compared. 
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Table 1. Key Performance Metrics Used in Evaluation 
Metric Unit Description 
Leakage Current Reduction μA or % Reduction in standby leakage compared to 

baseline gating techniques 
Wake-Up Energy pJ Energy consumed during transition from sleep to 

active mode 
Area Overhead mm² or % Additional chip area introduced by ML engine 

and ScPG control logic 
Inference & Switching Latency ns Time required for ML model decision and 

capacitor reconfiguration 
ML Engine Power Overhead % of module/SoC Power consumed by ML engine as a percentage of 

overall module or SoC power 
 
5. RESULTS AND DISCUSSION 
In order to judge the efficiency of the suggested 
ML-assisted Switched-Capacitor Power Gating 
(ML-ScPG) architecture, a full range of post-
synthesis simulations and studies were 
undertaken. The proposed system was marked 
against two comparison techniques, a conventional 
Header-Based Power Gating (PG) and Static 

Switched-Capacitor Power Gating (ScPG). Finally, 
the three configurations were benchmarked under 
the same SoC functional blocks and operating 
conditions with focus on these main metrics: 
leakage power, wake-up energy, area overhead and 
adaptivity. 
 
5.1 Comparative Results 

 
Technique Leakage Power Wake-Up Energy Area Overhead Adaptivity 
Traditional PG Baseline High Low Static 
Static ScPG −28% Medium Medium Static 
ML-ScPG (Proposed) −47% Low +5% Dynamic 

 
Section (Results) Discusses the results obtained 
with the proposed ML-ScPG architecture showing 
that it has reduced the leakage power by 47% 
compared to conventional power gating and 19% 
compared to static ScPG, proving the efficacy of 
data driven, and run time gating decisions. In 
addition, the wake-up power of ML-ScPG was the 
least, among all others tried, which is attributed to 
its intelligent adjustment of a capacitor 
engagement and charged-discharged behavior 
upon transitions of the states. The ML-ScPG 
approach had very small area overhead which was 
about 5 per cent but this can be explained by the 
huge energy savings coupled with gains in 
responsiveness. The extra space is largely due 

to/placed by the on-chip ML processor and the 
configurable capacitor bank, which was heavily 
optimized to be small with a quantized inference 
model and an efficient logic on how to use as little 
capacitor as possible. Comparative analysis of 
Traditional Power Gating, Static ScPG, and 
proposed ML-assisted ScPG is done in the graph 
below on four paramount scales, which are the 
Leakage Reduction in terms of percentage, Wake-
up Energy in the terms of normalization, Area 
Overhead in the terms of percent and Adaptivity in 
the terms of qualitative score. ML-ScPG technique 
shows a fair trade-off between leakage suppression 
and adaptivity at reasonable area and energy 
overheads. 

 

 
Figure 4.Comparative Evaluation of Power Gating Techniques Across Key Metrics 
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5.2 Adaptive Behavior and Environmental 
Robustness 
One of the significant benefits of ML-ScPG is the 
possibility to adapt the parameters of power gating 
strategies dynamically to real-time conditions of 
the system (switching activity, leakage, 
temperature, and voltage variations). With a 
latency of workloads inference less than 50 ns, the 
embedded ML engine had been able to monitor 
changes in workloads and adjust the ScPG 
configuration accordingly. This flexibility led to not 
just improved leakage suppression, but also wake-
up consistency in different thermal and process 

corners, which is traditionally a problem for 
conventional methods of over-design or 
insufficient performance. 
The robustness and analysis with temperature 
variation (T -20 o C to 85 o C) and voltage scaling 
(0.6V to 1.0V) demonstrated that ML-ScPG was 
able to be consistent in performance, the corner 
cases of the static configurations were reported to 
have degraded control over leakage and long 
latencies of wake ups. This assures us that the ML-
based power control allows fine-scale contextual 
optimization, which significantly increases the 
robustness of the power control system. 

 
 

 
Figure 5a.Leakage Reduction vs Temperature (Left Plot) 

 
 ML-ScPG consistently maintains ~45–47% 

leakage reduction across the full temperature 
range (−20°C to 85°C), showing high 
robustness. 

 Static ScPG performance drops significantly at 
temperature extremes, confirming limited 
adaptability 

 

 
Figure 5b. Wake-Up Delay vs Voltage (Right Plot) 
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o ML-ScPG shows stable and low wake-up 
latency (~20–23 ns), demonstrating fast 
response. 

o Static ScPG suffers from significantly higher 
and more variable wake-up delays (~50–62 
ns), especially at lower voltages. 

 
5.3 Trade-offs and Implementation 
Considerations 
Although there are benefits associated with the 
ML-ScPG approach, there are trade-offs with this 
method. The additional control complexity 
demands a tight timing relationship among ML 
engine, capacitor driver logic and sleep signal 
controller. Also, one should be mindful not to 

negate the energy savings through the cost of 
power inference, but in this realization the 
contribution to power of the ML engine was less 
than 1.2 percent of the total power consumed by 
the module, which is much less than the energy 
savings attained. 
Practically the ML-ScPG methodology will work 
best with always-on or frequently-idling functional 
blocks where the cost of the overhead is spread 
over a period of time and the dynamic behavior is 
also well modeled by the activity monitor. Even 
with very short huses during which the processor 
is not being utilised, a gating mechanism that is 
simpler can be more efficient, as they require a 
latency to control the run time inference. 

 

 
Figure 6.Energy Consumption vs Time During Power State Transitions 

 
5.4 Summary 
In short, the suggested ML-ScPG system achieves 
better leakage power, wake-up quality with little 
area augmentation. The combination of on-chip ML 
makes the solution scalable and intelligent in 
nature; it provides adaptation capability which can 
be absent in a traditional and static system, 
fulfilling the need to manage power and serve as 
the solution to power in next-generation ultra-low-
power SoCs. These advantages promote the 
proposed framework as a candidate that might be 
useful in energy-sensitive edge AI-based 
applications because it is a potential real-time 
responsive and energy-efficient framework 
solution. 
 
6. CONCLUSION 
This article proposed a new flexible power 
management scheme that combines Switched-
Capacitor-Assisted Power Gating (ScPG) but 
integrates it together with an on-chip machine 
learning (ML) engine that helps to minimize power 
leakage in ultra-low-power SoC. Using run-time 
activity trace and the use of ML of low weight 

inference, the proposed system is capable of 
adapting power gating parameters--including 
capacitor-get-involved and sleep-signal time in a 
dynamically changing way as determined by the 
nature of the workload and the environmental 
conditions within the system. The proposed ML-
assisted ScPG technique was fully simulated 
through a 28nm FD-SOI CMOS process and showed 
as much as 47 percent leakage power reduction, 
with reduced wake-up energy requirement and a 
reasonably small area cost of 5 percent as 
compared to conventional header-based and static 
ScPG implementation. The system was also shown 
to be resilient to temperature and voltage 
fluctuations, which makes it suitable to the 
deployment in always-on edge-AI and internet-of-
things devices, where energy efficiency, low-
latency wake-up, and flexibility are essential.  
This work is important because it shows that 
intelligent, runtime-controllable power gating is 
indeed possible, and quite effective, and that it 
represents a change in philosophy of leakage 
control, as moving toward a form of context-aware, 
real-time adaptation, with help of embedded 
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intelligence, that is more general than the other 
leakage-control techniques in the literature today. 
The architecture establishes a basis of the 2G 
energy-aware SoC architecture self-optimization 
under a dynamic condition without human 
resource and broadhand adjustments. 
Prospective work will also focus on exploring the 
applicability of more complex ML models like 
reinforcement learning in order to enhance the 
adaptive behavior and long term decision policies. 
Also, we will focus on model-compression, in situ-
retraining and hardware-friendly feature 
extraction to lower inference cost and in-field 
continuous learning. Silicon Prototype or FPGA 
compatible platforms will also be validated to 
determine the possibilities of deployment in real 
life. 
In short, the work introduces a scalable and 
intelligent framework to the problem of leakage 
management in low-power systems and a new 
opportunity of the co-design of microwire and 
hardware mechanisms in SoC energy-constrained 
scenarios. 
 
7. FUTURE WORK 
Further improvements to the planned framework 
will be done by increasing its flexibility, speed, and 
the practicality of the framework. A current 
prospect that is being looked into involves 
combining one which has the capacity to result in 
self-adaptive, reward-based policy of decision-
making, which continuously changes as workloads 
and systems conditions develop and change over 
time by inserting a reinforcement learning-based 
controller. The architecture as proposed can also 
be optimised further through integration of 
complementary methods in power management 
like adaptive body biasing in order to realise an 
even finer grained control of leaked power as well 
as the dynamic power. Lastly, in order to certify the 
correctness and effectiveness of the system in real 
world deployment, hardware-in-the-loop (HIL) 
implementation on field-programmable-gate-array 
(FPGA) platforms will be undertaken. It will allow 
assessing the ML-assisted ScPG framework in real-
time use in realistic workloads, opening the 
prospect of future silicon prototyping and 
deployment in commercial edge AI SoCs. 
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