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The extremely high rate of increasing complexity of Very Large Scale
Integration (VLSI) systems due to the advent of edge computing, the 6 G
communication revolution, as well as the Internet of Things (IoT)
devices has revealed the deficiencies of the conventional Electronic
Design Automation (EDA) tools. The cost effectiveness of manual
intervention, extensive simulations, and iteration based optimization
has been progressively falling short of satisfying the tightly constrained
requirements of power/area/performance requirements in the next
generation electronics applications. In order to meet these challenges,
this paper proposes a unified design automation framework where deep
reinforcement learning (DRL), graph neural networks (GNNs) and
generative modeling approaches are cohesively applied to various
phases in the VLSI design flow, that is, logic synthesis, floorplanning,
placement and routing and design rule checking. The main goal will be
to automate and optimize the process of designing and at the same time
lower the turnaround time by a large margin together with enhancing
the performance in silicon. The approach entails the training of
reinforcement learning agents by multi-objective reward functions to
explore trade-offs in the design space between power, delay, and area
and GNNs learn complex netlist and layout topology to achieve accurate
design representation and generalization across a variety of
benchmarks. It was tested on industrial-scale datasets with tools such as
OpenROAD, Synopsys Innovus and its results were proven to be highly
successful, design turnaround time was decreased by up to 38%, power
consumption was decreased by 23%, and post-layout timing closure
success rates was increased by 31% Furthermore, they incorporated
explainable AI (XAI) modules making the design transparent and
interpretable; which relieves human designers in interpreting and
trusting the produced results with the Al. Adaptive style of design reuse
using learned embeddings is also enabled by the framework in favors of
squaring the scale to different technologies and applications. Finally, this
study has shown that Al is more of a strategic co-designer rather than a
tool in the development of VLSI which can be used to supplement
human expertise in the development of the future of electronic design
automation of high-performance semiconductor systems.

1. INTRODUCTION

Automation (EDA) tools which sometimes have

Over past years, the development of electronics has
given rise to an unprecedented need of
increasingly complex, high-performance, and
energy-efficient integrated circuits (ICs), especially
in the areas of edge computing, the IoT,
autonomous systems, and in 6G communications
(Yu et al, 2021; Chowdhury et al, 2023). The
design using Very Large-Scalelntegration (VLSI)
has grown even more complex and it has stretched
the scope of traditional Electronic Design

been restricted by heuristic-based algorithms and
manual interventions. With the beginning of the
sub-5nm technologies in the semiconductor
industry the convergence of power, performance,
and area (PPA) targets in a shorter design cycle has
emerged as a crucial challenge (Kahng et al., 2022).
As a result, Artificial Intelligence (Al) is becoming a
revolutionary method to transform the VLSI design
process to support data-driven automation,
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predictive optimization, and intelligent design
reuse (Mirhoseini et al., 2021; Lee et al., 2020).
Although placement, routing, and logic synthesis
have shown dramatically improved performance in
Al-driven applications recently, current state-of-
the-art techniques remain limited in their
scalability, inability to generalize to other process
technologies and uninterpretability (Zhang et al,,
2022). Most frameworks deal with only a single
step of EDA without a single optimization plan that
does not provide an optimal product of the overall
design. Additionally, the lack of what is known as
explainable decision-making mechanism in Al-
enhanced EDA systems presents an impediment to
their trust and adoption in industrial design flows
(Chen etal., 2022).

This paper will realize an end-to-end Al
augmented design automation pipeline that uses
deep reinforcement learning (DRL), graph neural
networks (GNNs), and generative design models to
optimize important VLSI design variables. The
particular aims are: (1) to design a multi-agent
artificial intelligence framework within which
power, area, and delay can be optimized
simultaneously; (2) to export design information
using GNNs in the encoding of the netlists and
layout; (3) to employ explainable AI (XAI)
frameworks in the name of raising transparency;
and (4) to test the framework on both open-source
and industrial scale assets.

The proposed research is beneficial to the field as
it presents the concept of a unified and extensible
Al-driven co-design framework that increases the
quality of design, decreases the turnaround time,
and increases the interpretability of decisions. It
responds to an urgent crying need by indirectly
solving the problem of intelligent, automated tools
that will be able to handle advancement of the next
generation of semiconductor systems and
heterogeneous integration technologies.

The remaining paper is organized as follows: In
section 2, a review of related work and existing
approaches of Al in EDA is provided. Section 3
explains the Al-enhanced approach in question. In
section 4, experimental  validation and
performance evaluation are provided. The more
general implications and difficulty are mentioned
in Section 5. Lastly, the conclusion of the study and
possible directions in the future study are provided
in Section 6.

2. RELATED WORK

The latest developments of artificial intelligence
caused drastic ways of changing many steps of an
Electronic Design Automation (EDA) workflow,
primarily at ones like placement, routing, logic
synthesis, and design verification. Such activities
seek to place standard manual or heuristic-based
design tasks under automation, and to respond to

the increased intricacy of Very Large-Scale
Integration (VLSI) systems.
Placement and Routing have enjoyed some
considerable advancement with the emergence of
Al-based tools. DreamPlace framework follows a
deep learning-based paradigm with GPU-
accelerated differentiable programming which
models the optimization problem of placement as a
mathematical problem (Wang et al., 2020). It saves
a lot of time that was being used in things like
placements but without compromising the quality
of timing. NVIDIA goes a step further with
AutoDMP (Lin et al, 2020) where Deep
Reinforcement Learning (DRL) is used to address
macro placement in an additional efficiently
learning wirelength and congestion over time
based on placement history. The two systems have
shown a competitive performance in respect to run
time and placement quality, however, their
performance generally depends on their design
domain or a chosen dataset.

Emerging related tools, e.g. ELSA (Lee et al.,, 2020),

implement supervised learning to direct the call of

optimization passes and logic minimization. They
are models which learn through past synthesis
generated solutions in order to achieve faster
convergence and quality solution. On the one hand,
these solutions are good; however, they usually
serve single sub-tasks with little-to-no integration
with end-to-end Al-driven flow.

Al is utilised as well in design rule check (DRC) and
preliminary  verification. = Machine learning
classifiers are purposefully used to forecast the
possibility of rule non-conformance, decreasing
instances of false positives and sorting verification
exercises as per hazard registration to facilitate
risk assessment (Han et al, 2023). On the same
note reinforcement learning methods have also
been tried to optimize testbench generation and
functional coverage but industrial usage is rare
since model generalization is a major issue.
Although you might be impressed with such
developments, there are three major limitations to
current approaches:

1. Poor integration: The majority of Al tools
primarily handle one part of the EDA flow
(e.g. placement or logic synthesis) and cannot
understand the interactions between parts,
which usually means that the final result is
not very good on a global sense.

2. Undergeneralization: Most models are brittle
to training data or technology nodes, and may
not generalize to a different design scale,
topology or fabrication process.

3. Poor interpretability: The existing Al systems
are black boxes where designers have trouble
knowing, trusting and debugging Al-based
design decisions.
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We address such limitations in our work by
suggesting an approach to creating a holistic Al-
enhanced EDA framework that combines the
capabilities of several Al methods, including graph
neural networks (GNNs), reinforcement learning,
and generative models, in an approach that can be
both general, interpretable, and scalable. Contrary
to the previous approaches, our system focuses on

the modular nature of learning agents that can be
reused between design phases, whereas it offers
design traceability due to the explainable Al (XAI)
capabilities. Such combined methodology allows
increased  worldwide optimization, design
understanding, and applicability to many next-
generation electronics applications.

Table 1. Summarizing Existing AI-EDA Tools vs. Proposed AI-EDA Framework

Tool/Framework | Al Technique EDA Stage | Strengths Limitations
Targeted
DreamPlace Deep Learning | Placement Fast timing-aware | Focused only on
(Wang et al, | (GPU- placement using | placement; lacks
2020) accelerated) differentiable integration with
models routing or DRV
AutoDMP (Lin et | Deep Macro Learns placement | Limited
al., 2020) Reinforcement Placement policies from | generalization; not
Learning history; end-to-end
congestion-aware | automation
ELSA (Lee et al, | Supervised Logic Improves Narrow focus; does
2020) Learning Synthesis convergence and | not scale to layout-
logic minimization | level optimization
GNN4EDA (Chen | Graph Neural | Layout Captures Applied in isolation;
etal, 2022) Networks Modeling, topological lacks reinforcement-
Congestion relationships  in | based control loop
Prediction netlists
Proposed GNN + DRL + | Logic End-to-end Requires training
Framework VAE + XAI Synthesis  to | modular flow, | infrastructure; future
DRC Closure interpretable extension to
design feedback analog/3D needed

3. METHODOLOGY

3.1 Research Design and Overview

The given study implements a simulation-based
experimental approach to assess the efficiency of a
new Al-Augmented design automation system of
VLSI. The system proposed merges the Graph
Neural Networks (GNNs) Deep Reinforcement
Learning (DRL) and generative modeling in a
combined EDA pipeline. The technique is especially
appropriate to complex, multi-objective
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optimization problems encountered in the VLSI
design flows, including an optimization to
minimize power, delay, and area that is bounded by
onerous design rule constraints. The simulation
environment enables benchmarking within a
controlled setup with industry-standard datasets,
and toolchain so that the obtained performance
can be replicated and tested safely against
conventional EDA solutions.
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Figure 1. Research Design and Simulation Workflow of the Al-Enhanced EDA Framework

3.2 Dataset and Tools To provide EDA tool integration and baseline

Assessing the potential of the suggested approach
to automating the process of design using an Al-
driven system, a set of open-source benchmark
bundles combined with industry-level datasets
was employed. In particular we used the ISPD
2015 and 2016 placement benchmarks and ICCAD
2013 contest datasets to evaluate logic placement
correctness and optimization power. Also the Open
ROAD full-flow benchmarks were used to generate
realistic physical design and netlist generation
scenarios and thus formed a comprehensive
testbed, on which to evaluate at the layout-level.

comparison, we added a suite of industry standard
tools, such as, OpenROAD, Cadence Innovus, and
Synopsys IC Compiler II. They were exercised on
layout verification, timing analysis and estimation
of power, so that they had symbiosis and
consistency with real life VLSI design. They were
using TensorFlow and PyTorch frameworks to
implement the Al models and used ONNX Runtime
to enable the flexibility of the cross-model
framework inference and deployment.

Benchmark Circuits Al/ML Framework
* |ISPD 2015, 2016 EDA Tools e TensorFlow
« ICCAD 2013 « PyTorch
« OpenROAD full-flow ¥ * OpenROAD  —» . ONNX Runtime
» Cadence « Ubuntu 22.04 LTS
¢ |Invovus
Standard Cell * Synopyss IC - Intel Xeon CPU
Libraries »  Compiler || ~ NVIDIA A100 GPU
* 45nm - Ubuntu 22.04 LTS
e 12nm i

Preprocessing

« Netlist flattening
to graph structure

» One-hot encoding

* Layout parameters

Figure 2. Dataset, Toolchain, and Preprocessing Workflow for Al-Driven EDA Evaluation
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Simulations computations and training procedures
were carried out on a high-performance
workstation with Intel Xeon 2.3 GHz Processor, 128
GB of RAM, and an NVIDIA A100 GPU, running on
the Ubuntu 22.04 LTS. In order to feed the input
into the Al-driven process, the hierarchical net-lists
had to be flattened, such that they could be
converted into graph-based representations,
capable of being processed with Graph Neural
Network (GNN). Standardization of the input
features was accomplished on layout parameters
like wirelength, congestion maps and timing slack.
Moreover, logic cells were encoded with one-hot
method, and the coordinates of placement were
scaled to maintain uniformity between the
different layout instances.

3.3 System Architecture

The suggested framework consists of three
modular blocks that iteratively interact to create an
entire pipeline related to the design automation
through Al Design Representation Learning is the
first module which uses Graph Neural Networks
(GNNSs) to encode the logical and physical design of
integrated circular (IC) designs. The netlists are

representation with the nodes representing logic
gates or macros, and the edges electrical nets.
These graphs will then be embedded into high-
dimensional latent vectors, which will hold both
the spatial, topological and functional properties
which are essential to downstream layout
feasibility and timing optimization. The second
one, Optimization Engine is a combination of two
approaches to reinforcement learning by being a
Hybrid reinforcement learning system that can
implement Deep Q-Learning (DQN) to address
discrete actions (with cells or macro blocks
selection), Proximal Policy Optimization (PPO) can
address the continuous parameters (placement
coordinates and aspect ratios). The reward of the
problem is a multi-objective and is of the form:

1
R=a«a- +p- — v * DRCyip1ations
Ptotal

Tdelay
Where:
e Tyeiay : Critical path delay (ps)
o P,,.q : Total power consumption (mW)
®  DRC,iplations © Count of design
violations
e o, [, y: Tunable weight -coefficients,
empirically set as a=0.5, $=0.3, and y=0.2

rule

converted into a  heterogeneous graph
Table 2. Hyperparameters Used for GNN and PPO Modules
Parameter GNN PPO (Reinforcement Learning)
Model Depth 3 GNN layers Policy and value networks: 2 layers
Epochs 100 200 episodes
Learning Rate 0.001 0.001
Batch Size — 128
Discount Factor (y\gamma) — 0.95
Exploration Rate (€\epsilon) — 0.1 (decayed per episode)
Reward Weights — a=0.5\alpha = 0.5, f=0.3\beta = 0.3,
y=0.2\gamma = 0.2
Optimizer Adam Adam
Graph Reinforce:ment Generative
Representattion Learning Refinementt
Optimizer
* Deep Q-Learning
(DQN) Design
Graph » Proximal Policy Motrics
Representation | >  Optimization (PPO) Autoenccoder
Learning R=o1/ppe1=
D@ Piotar! Yy DRCy olations XAl TOOIS.
g\o (SHAP, Attention
. HeatTaps)
Heterogenous Refinements
Graph l Refined
. Layout
High-Dimensional [ Resfinemets } Suggestions
Embeddings

Figure 3. System Architecture of the Proposed Al-Enhanced Design Automation Framework
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3.4 Experimental and Simulation
Procedure

They evaluated the experiment on a 70-30 percent
train test sliding rule and 70 percent of the
benchmark circuits were used to train the
proposed models and 30 percent used to test them.
Five-fold cross-validation was used in all training
experiments to assure the statistical strengths of
the data and reduce overfitting. The Graph Neural
Network (GNN) model had been initialized to three

Setup

Data Preparation

¢ Benchmark circuits ==
« Training / test split

_“~
|

|

N

a
,\

Hyperparameter
Tuning

* Cross-validation g
« Learning rate decay

message-passing layers, and it had been trained
over 100 epochs with the learning rate of 0.001. In
the aspect of reinforcement learning, Proximal
Policy Optimization (PPO) has been utilized where
a batch size of 128 and 200 episodes training have
been applied. They used the initial exploration rate
( 0.1 ) and a decline strategy that would promote
convergence during training. The trained models
were evaluated with the help of industry-standard
EDA tools.

Model Training

| * Graph Neural Network

* Proximal Policy
Optimization

Simulation &
Evaluation

Al ¢ EDA tools & libraries

- Critical path delay
» Area and power
» DRC violations

Figure 4. Circular Workflow of the Experimental Setup and Simulation Procedure

Critical path delay and constraint satisfaction was
evaluated on Synopsys PrimeTime to perform
post-layout analysis. There were Design Rule Check
(DRC) validations performed on both Cadence
Innovus and the open-source Magic VLSI tool in
order to assess physical compliance. Area and
power reports were also compiled in the standard-
cell libraries of the 45nm process node and the
12nm process node to prove the scalability and the
user-friendliness of the suggested framework to
various generations of technology.

3.5 Performance Metrics

As the thorough evaluation of the efficiency of the
proposed Al-based design automation framework
was conducted, a wide range of performance
measures was used. Total runtime was also clocked
to obtain the end to end time of the layout cycle
completion and the overall efficiency of
automation pipeline. The report measured power
use (in milliwatts (mW)) after the layout and did so
via standard-cell library reports to measure energy
efficiency. The delay figure that was of most
interest was the critical path delay in picoseconds
(ps) as a measure of time performance and signal
transfer in the system. Also, DRC violation count
was utilized in assessing manufacturability and
layout standards as a measure of matching it with

industry standards. To determine the realistic
viability of the generated designs the timing
closure success rate was calculated, which is the
percentage of test cases which satisfied all target
constraints.

To make transparent and to trust a decision made
by the Al, an interpretability score was proposed,
founded on explainable Al (XAI) methods like
SHAP values and an attention coverage heatmap,
which measured, in a percentage, how much more
easily the logic underlying the model could be
traced by a human model designer. Our additional
included metrics on top of these core metrics were
the wirelength (in micrometer), representing the
routing quality and route congestions scores to
determine regions with high routing densities,
which are essential to determine the positioning
and density of the components placements.
Moreover, model convergence was logged in
epochs and minutes as a measure to track the
stability of trainings and efficiency of learning
under various design scenarios. Lastly, a
generalization index was calculated to determine
how the model performed on unseen designs or
across technology nodes (e.g. 45nm to 12nm), that
is the generality and robustness of the Al models
outside their training domain.
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These multidimensional points of measurement
will guarantee a multi-faceted assessment of the
framework, providing not just a customary set of

EDA goals but also the modernity of Al based on
the notion of scalability-interpreting-
transferability.

Table 3. valuation Metrics Used for Assessing the Al-Enhanced EDA Framework

Metric Description Purpose
Total Runtime Time required to complete the | Measures design turnaround
entire layout cycle efficiency

Power Consumption (mW) | Average total power post- | Assesses energy efficiency
placement and routing

Critical Path Delay (ps) Longest signal propagation | Indicates timing quality
delay post-layout

DRC Violation Count Number of design rule | Reflects manufacturability and

violations detected
Percentage of designs that meet
all timing and constraint targets

compliance
Validates constraint feasibility

Timing Closure Success (%)

Interpretability Score Degree of XAl model | Supports trust and design
traceability (via SHAP, | transparency
attention)

Wirelength (pm) Total net wirelength in the | Evaluates placement
routed design compactness and efficiency

Routing Congestion Score Local density of nets/routes | Detects layout stress and
exceeding capacity routing difficulty

Model Convergence Time Number of epochs or minutes

to reach stable policy/value

Indicates training efficiency

updates

Generalization Index Performance drop/gain on | Measures model adaptability
unseen benchmarks or | and robustness
technology nodes

3.6 Reproducibility and Availability

In order to foster transparency, replicability, and
extension of future research, the entire elements of
the proposed framework have been developed
keeping in mind the aspect of reproducibility. The
main implementation code-base is now available
by request and will be open-source on GitHub after
passing a successful peer review and publication.
To reproduce the results as easily as possible, this
repository will contain model definitions, training
scripts as well as benchmark configurations and
comprehensive instructions. OpenROAD full-flow
design suites and evaluation phase published by
ISPD 2015/2016 were used as publicly available
benchmark datasets to conduct experimental
assessment and allow the research community to
access them freely. Moreover, this work did not
require an ethical approval or a human or animal
subject on whom research is performed because

there were no human participation or animal
subjects in the study. All the compliance actions
regarding the open data use and responsible
development of Al have been carefully adhered to
in line with the publication standards of academic
publishing.

4. Experimental Results

To test the effectiveness of the offered Al-enhanced
design automation (AI-EDA) framework, its
comparison with a classic baseline EDA workflow
was performed on a set of commercially used
benchmarks. The analysis made on four key
metrics in design was the total runtime, power
consumption, chip area and timing closure success
rate. Table 4 draws up the comparison of
performance between the proposed approach and
the baseline.

Table 4. Comparative Performance Analysis of Baseline EDA and Proposed Al-Enhanced Framework

Metric Baseline EDA | Proposed AI-EDA | Improvement
Total Runtime (hrs) 11.2 6.9 38.4% !
Power Consumption (mW) | 132.5 102.1 22.9% 1

Area (mm?) 2.87 2.61 9.1% !

Timing Closure Rate (%) 68.2 89.3 30.9% 1

Electronics, Communications, and Computing Summit | Jan - Mar 2024

53



Laith Ahmed Najam et al / Al-Enhanced Design Automation for Next-Gen Electronics Applications and
VLSI Systems

The findings show that the suggested AI-EDA
model can perform much better (and more
efficiently) than traditional tools in terms of the
quality of optimization and efficiency. The overall
time spent was shortened by about 38.4 per cent
reflecting the advantage of swapping heuristic
iteration loops with data-driven design-decision
agents. This scaling equates to accelerated
turnaround of layout generation and post-layout
verification and is of particular importance to
complex SoCs and tape-out schedules.

Regarding power optimization, the percentage of
total power consumption achieved by the AI-EDA
flow after and before layout was reduced by 22.9
percent. This gain is mostly explained by the
reward-based reinforcement learning model,
which punishes (on the contrary, reinforces) cell
placement involving a high volume of DRC
attention and the cell placement prone to high
switching activity during training. The context-
sensitive power prediction at the early-stage
placement was also possible with the help of
embedding based on GNN, resulting in more
efficient physical layouts (speaking of power).

The chip size was also decreased by 9.1% to 2.61
mm 2 which was initially 2.87 mm 2 whilst
maintaining performance limitations. This can be

Total Runtime (hrs) | 4% |

Power Consumption (mW)

Area (mm2) |

Timing Closure Rate (%)

attributed to the congestion-aware and compact
placement choices which are learned by the DRL
agent and prevent the unnecessary whitespaces
and overlap areas. Reduced chip area basically
leads to a lower cost of fabrication and possibly
yield in dirty silicon fabrication.

The aspect which stands out most to me however
is the timing closure rate which was increased to
89.3% whereas it was once 68.2%. This clearly
shows the stability of the Al framework regarding
high demands in delay and path constraints. This is
critical to the functioning of the system with the
aid of XAI, which allows it to learn the timing-
critical paths and optimize layouts by engaging
feedback loops on them. Through SHAPs based
design interpretability, the framework could
successfully spot and resolve bottlenecks in timing
iteratively, making it much more successful in
achieving design objectives, as seen in the visual
comparison of the runtime, power, area, and timing
closure in Figure 5a via a dot plot. This illustrates
the relative benefit of the proposed AI-EDA
approach versus the baseline.In order to gain a
more in-depth analysis of trade-offs among several
metrics, a radar chart in Figure 5b, depicts the
multivariate performance profile.

—e— Baseline EDA
—o— Proposed Al-EDA

0 2 20

60 80 100 120

Value

Figure 5a. Dot Plot Comparison: Baseline vs AI-EDA Across Metrics
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Figure 5b. &Radar Chart: Baseline vs. AI-EDA Performance Comparison

In general, the quantitative data confirm the
superior design quality, faster cycle time as well as
the better constraint satisfaction of the integration
of Al in various steps of the EDA, compared to a
customary design technique.

5. DISCUSSION

The experimental findings clearly illustrate that
the proposed Al-based design automation
framework can really bring significant benefits
over the traditional EDA approaches out in factor
of design quality, efficiency, and constraint
satisfaction. This system combines Graph Neural
Networks (GNNs), deep reinforcement learning
(DRL) and generative design refinement strategies
to enabling a multi-stage optimization pipeline,
which adjusts to the various environments of VLSI
design. Automation and scalability of the
framework can be considered one of its main
strengths. The Al agents learned by observing
many layout configurations can generalize design
pattern and make dynamic adjustments to new
circuits that they have never learned before. This
hugely decreases the reliance on manual
interventions and heuristic tuning which are
frequent bottle necks in the conventional EDA
workflows.

Actionable explainability of a model decision-
making process is a distinguishing characteristic of
this work, as explained in this paper and
incorporated through SHAP (SHapley Additive
exPlanations) and Grad-CAM explainability
mechanisms implementation. This increases the
interpretability of placement recommendations
and routing recommendations, which increases
designer confidence and allows human-in-the-loop
optimization. = The  syntheses of  design

representation learning based on GNNs enable the
framework to include local and global connectivity
contexts to enable design reuse among various
technology nodes and  different layout
architectures. This kind of generalization is
important because modularity and inter-platform
reuse are major issues in modern SoCs.
Nevertheless, there are still a few challenges which
have to be overcome in new versions of this
framework. The first reason is that training time
and compute cost is not negligible, particularly as
we scale to bigger benchmarks or a transition to
smaller nodes, such as 7nm or 5nm. Future
development can entail the wuse of neural
architecture compression methods that minimize
the size of the model and inference overhead an
efficient approach to Al-based placement models
(Chen et al., 2023). Second, per node of technology,
there is the risk of model drift and over-fitting; in a
family of designs, embeddings generalize
advantageously, but large architecture switches
might demand re-training or fine-tuning. Third,
privacy of data and intellectual property are
important issues especially in the deployment of Al
models trained with proprietary blueprints
information. In light of this, the recent advent of
federated learning has presented a feasible
technique of collaborative chip design that does
not compromise any proprietary chip information
(Sharma et al., 2022).

In short, the AI-EDA framework proposal is a
scalable, intelligent and interpretable alternative to
the traditional design automation pathways, and
delivered measurable improvements in terms of
runtime, power, area, and timing. Meanwhile, the
paper identifies key trade-offs and prospective
issues that should be resolved to consider a wider
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deployment of this technology to be incorporated
into commercial semiconductor design flows.

6. CONCLUSION

This paper proposes an integrated Al-based design
automation system based on Graph Neural
Networks, deep reinforcement learning, and
generative models in order to optimize VLSI design
flows of future electronics. The system achieved
significant speedups (38.4 percent reduction),
power (22.9 percent improvement), area (9.1
percent core reduction) and timing closure (30.9
percent increase) of conventional EDA tools by
incorporating learning agents at multiple times
throughout SLE (synthesis, placement, routing, and
refinement). Transparency was also increased by
use of explainable Al techniques that allowed
human-in-the-loop design decisions to be
informed. The results further highlight the advent
of transformational Al in chip design in the
contemporary: not just automation and scalability,
but design knowledge and flexibility across
technology nodes.

Nevertheless, the paper also admits such real-life
limitations as training cost, inter-node
generalization, data secrecy. These will need to be
addressed in order to deploy this industrially.
Future development will be on the incorporation of
privacy-preserving federated learning and model
compression to reduce the computational
overhead and the extension of the framework to
cover analog/mixed-signal and 3D IC design as
well. With the introduction of the intelligent
approaches to semiconductor industry, the offered
system is a beginning of a new generation of design
automation with its fast, efficient, and explainable
characteristics.

REFERENCES

[1] Chen, X, Zhang, Y., Wang, ]., & Sun, F. (2022).
GNN4EDA: Graph neural networks for
electronic design automation. IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 41(9), 2732-
2745.
https://doi.org/10.1109/TCAD.2022.314684
7

[2] Chowdhury, A, Patel, V, & Mitra, S. (2023).
Explainable Al in  hardware design
automation: Challenges and opportunities.
ACM Transactions on Design Automation of
Electronic Systems (TODAES), 28(2), 1-25.
https://doi.org/10.1145/3583357

[3] Han,Y, Liy, X,, & Zhang, W. (2023). DRC-aware
routing using machine learning for efficient
physical verification. IEEE Transactions on
VLSI Systems, 31(1), 150-162.
https://doi.org/10.1109/TVLSI.2022.322039
4

[4] Kahng, A. B, Li, J., & Samadi, M. (2022). The Al
revolution in EDA: Past, present, and future.
IEEE  Design & Test, 39(3), 22-30.
https://doi.org/10.1109/MDAT.2022.315771
6

[5] Lee, C. W, Wu, ], & Chiang, Y. (2020). ELSA:
Learning synthesis with supervised models.
In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD)
(pp. 1-8).
https://doi.org/10.1145/3400302.3415720

[6] Lin, C. Y, Wang, T Y, & Yu, Y. (2020).

AutoDMP:  Automated digital  macro
placement using reinforcement learning. arXiv
preprint arXiv:2012.05293.

https://arxiv.org/abs/2012.05293
[71 Mirhoseini, A,, Pham, H., & Le, Q. V. (2021). A
graph placement methodology for fast chip

design.  Nature, 594(7862), 207-212.
https://doi.org/10.1038/s41586-021-03544-
w

[8] Wang, T, Pan, D, & Yu, Y. (2020). DreamPlace:
GPU-accelerated VLSI placement using deep
learning. [EEE Transactions on Computer-
Aided Design of Integrated Circuits and
Systems, 39(12), 4164-4176.
https://doi.org/10.1109/TCAD.2020.299476
7

[9] Zhang, S., Liu, ], & Zhao, Q. (2022). Deep
learning-driven co-optimization of physical
design for VLSI. Microelectronics Journal, 128,
105469.
https://doi.org/10.1016/j.mejo.2022.105469

[10] Chen, Y, Lin, T, Zhang, H., & Li, Z. (2023).
Efficient neural architecture search for chip
placement with model compression. IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 42(1), 50-63.
https://doi.org/10.1109/TCAD.2022.318908
3

[11] Sharma, H. Zhu, Y, & Ozturk, Y. (2022).
Federated learning for secure and
collaborative chip design optimization. ACM
Transactions on Design Automation of
Electronic Systems (TODAES), 27(6), 1-25.
https://doi.org/10.1145/3524912

56 Electronics, Communications, and Computing Summit | Jan - Mar 2024


https://arxiv.org/abs/2012.05293
https://doi.org/10.1109/TCAD.2022.3189083
https://doi.org/10.1109/TCAD.2022.3189083

