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Real-time object detection itself is an essential ingredient to many
future computer applications including autonomous driving, intelligent
surveillance systems, robotics, augmented reality or virtual reality
interfaces. Although with convolutional neural networks (CNNs) such as
YOLO and SSD, there have been a notable performance in the respect of
the detection speed and accuracy, due to the usage of local receptive
fields and little global context, these networks fail to effectively model
complex object relations, especially when requirements are placed on
cluttered or dynamic scenes. In the most recent past, vision
transformers (ViTs) have become an effective alternative because of
their ability to handle long-range dependencies with the help of self-
attention. But conventional transformer-based models have high
processing overheads and deserve to be deployed on a smartending and
resource-constrained device. To resolve this shortcoming, we introduce
a new transformer-based object detection framework TransDetect,
which is optimized in terms of efficiency, low inference latency and
compatible with edge Al platform. TransDetect employs lightweight
convolutional tokenization, hierarchical multi-head self-attention, and
context-aware decoding layers to balance the detection accuracy and
the expediency of the computation well. The model is also optimized by
quantization-aware training, structural pruning, an ONNX-based
deployment, making it perform real-time requirements on devices like
the Nvidia Jetson Nano and Raspberry Pi 4. Using large-scale tests on
the most popular datasets such as MS COCO and Pascal VOC, it can be
concluded that TransDetect gained 81.3% on mean Average Precision
(mAP@0.5), exceeding the other lightweight CNN-based models, despite
having an extremely low inference latency of less than 30 milliseconds.
These findings present opportunities of transformer-based
architectures in real-time vision tasks under constrained circumstances.
The model proposed is scalable and deployable to operate edge
inference thereby making intelligent computing systems to realize an
operation that realizes robust object detection using few hardware and
energy consumption.

1. INTRODUCTION

Faster R-CNN have contributed greatly to the

The advance of real-time intelligent systems in the
autonomous vehicle design, smart surveillance,
robotics, industrial automation, etc., has put the
object detection at the centre stage of computer
vision studies. Object detection is not simply an
ability of machine perception and interpretation of
the surrounding world, but 0 it is the basis of the
decision-making process in changing and
complicated scenes. The commonly used methods
to detect objects in the past have majorly
depended on convolutional neural networks
(CNNs) since they have been known to ascertain
effective extraction of spatial hierarchies of
features. Such models as YOLO (You Only Look
Once), SSD (Single Shot MultiBox Detector), and
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state-of-the-art problem balance between accuracy
of achieving detection and demonstrating real-
time performance. However, this type of models
are limited in their ability to capture long range
dependencies and contextual relationships, by
their local receptive fields, an aspect that is crucial
in situations where the objects might be occluded
or in cases where the background is crowded or
multiple objects interacting.

During the last few years, the computer vision
community has been exposed to the revolutionary
effects of transformer networks (a natural
language processing-oriented architecture). With
their multi-head self-attention modules, vision
transformers (ViTs) have shown an impressive
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capacity to model spatial dependencies and a
superior capability to learn global context in
comparison with CNNs. Remarkably, DETR
(Detection Transformer) and Swin Transformer
models have introduced new state of the art in the
process of object detection. Nonetheless, one find
that these architectures based on transformers are
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computationally costly, have a heavy memory
consumption and model size, making them
impractical to run on low-end resource gadgets
like an edge device. The delays created by such
models compromise the usefulness of these
models in real-time applications which require
speedy decision making and action.
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Figure 1. Applications of Real-Time Object Detection in Next-Generation Intelligent Systems

In this agenda item we introduce TransDetect, a
new transformer-based pipeline of real-time object
detection specifically designed to work in the
context of next-generation computing systems,
especially those with limited power, memory and
processing capacity. TransDetect follows a hybrid
architecture featuring effective patch tokenization,
hierarchical self-attention modules and
lightweight decoding to simultaneously achieve
high detection precision and low inference latency.
Moreover, it also uses model compression methods
(including quantization-aware training, structured
pruning, and deployment optimization using
ONNX, and TensorRT), and thus supports efficient
inference on edge devices. The suggested model is
seriously tested on general object detection data
sets like MS COCO and Pascal VOC with the model
delivering high performance as compared to
current lightweight CNN models and staying under
30ms of execution time on servers like the Nvidia
Jetson Nano. With this contribution, we would like
to contribute to advancing the state-of-the-art in
transformer-based real-time object detection and
hence fill the gap between high-accuracy deep
learning models and their implementation in
resource-constrained environments.

2. LITERATURE REVIEW
The Convolutional neural networks (CNNs) have
become the foundations of most state-of-the-art

Real-time object detectors like YOLO (You Only
Look Once), SSD (Single Shot MultiBox Detector)
and Faster R-CNN. These models effectively trade
off detection accuracy with fast inference speed
and hence can be used in different application such
as surveillance, mobile devices and autonomous
systems. But the inherent weakness of CNNs is its
locality, each layer acts on a small receptive field,
and hence, long-range dependencies or global
context cannot be easily modeled over the network
unless classical depth is greatly increased. This
limits their capacity to recognize small objects,
occluded objects or objects with ambiguous
context especially complex or cluttered scenes.

A way of overcoming these shortcomings is that
transformer-based architectures are now being
applied to vision tasks, and are showing large gains
in terms of modeling global relationships. Carion et
al. (2020) led the way with the pioneering scheme
Detection Transformer (DETR), which forms part
of the self-attention mechanism in eliminating the
use of anchor boxes and non-maximum
suppression and allowed end-to-end approaches
to object detection. Nevertheless, DETR has been
demonstrated to converge slowly and take many
floating point operations per second, which
precludes its use in real-time applications. Follow-
ups like Deformable DETR and Swin Transformer
had adatability and hierarchical feature extraction
strategy to enhance convergence speed and
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precision of detection, respectively. Nevertheless,
the majority of vision transformers are still
computationally demanding and not well
optimized to operate on embedded or edge devices
with low cost memory and energy budgets.

In a bid to fill this performance-efficiency gap,
lower weight forms of transformer enhancements
and hybrid construction have been developed with
the advance in research. Introducing MobileViT,
TinyViT and efficient former, a set of models
combining the convolutional methods and the
attention blocks in order to scale down the model
size, without compromising accuracy.
Simultaneously, edge-centric frameworks such as
MobileNet-SSD, Tiny-YOLO have been shown to be
able to perform detection in real time but similarly
with only the smallest resource consumption and
less frequently, lower precision as well. Moreover,
we have deployment tools like TensorRT, ONNX
Runtime, TFLite that offer opportunities to
optimize the deep learning models on low-
powered devices. However, the solutions are not
quite adequate yet in terms of incorporating
complete transformer-based detection pipelines
that are performance optimized at the edge. This
discrepancy supports the necessity to have such a
model as TransDetect, which is a transformer-
based, light detection system best suited to
deployment on resource-constrained devices.

3. Proposed Model: TransDetect

3.1 Architecture Overview

The concept of the proposed TransDetect model is
a hybrid transformer-based object detection

architecture that combines the performance of the
convolution wused in preprocessing, and
representation ability of the self-attention unit. In
principle, TransDetect adheres to the encoder-
decoder architecture of vision transformers that is
repurposed into low-latency real-time application.
The model aims at deriving global semantic
characteristics and preserving spatial granularity
that is important in identifying precise object
localization.

The pattern in the architecture starts with a patch
embedding module, avoiding conventional
flattening and the inclusion of a light convolutional
tokenizer instead. The module splits the input
image into non-overlapping patches and maps
each patch to a fixed dimensional token with a
shallow convolutional neural network (CNN). As
opposed to purely linear projections in classical
ViTs, the convolution-based method maintains
local spatial consistency and can impose even in
the earliest feature levels, which adds greater
inference efficiency to down-stream stages.

The embedded tokens are then fed into a
transformer encoder which contains multiple self-
attention (MHSA) hidden layers and feed-forward
neural network (FFN) layers. It has the self-
attention mechanism, which enables the model to
learn long-range dependencies in various parts of
the image which is one of the major shortcomings
of the CNN-based detectors. Also, positional
embeddings are used to remember the spatial
knowledge across the attention heads that allows
interpreting the skews between tokens at the
context of the original layout of the image.
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Figure 2. Schematic Diagram of the Proposed TransDetect Architecture

Transformer decoder is applied to process the
output of present encoder, which comprehends
cross-attention to tune and align the features,
which were encoded, with a grouping of learned
object queries. Every query is associated with a
potential object and communicates with the global

representation of tokens, produced bounding box
coordinates and probabilities of classifications.
The approach allows it to do away with the hand-
crafted anchor boxes or any such region proposal
networks, simplifying the detection pipeline.
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In summary, TransDetect architecture focuses
more on striking a balance between
expressiveness as well as efficiency. Its encoder-
decoder architecture, augmented with the
hierarchical attention and optimized token
management, makes it capable of delivering rather
strong performance on both high-performance and
low-end devices in terms of object detection. This
design is also highly adaptable to edge computing
with pruning and quantization as an integration
into the architecture will be simpler due to its
modularity.

3.2 Optimization Techniques

The model includes a host of advanced
optimization techniques to be sure it runs in real-
time settings, especially on under-powered edge-
mounted devices like the Nvidia Jetson Nano and
Raspberry Pi. These techniques can gain enormous
savings in computational overhead, memory
consumption and latency of inference, without
necessarily losing high detection rates.

Pruning and Quantization-Aware Training
(QAT)

TransDetect uses pruning, a method called
structuredpruning, to get rid of redundant or non-
contributive  parts like attention heads,
intermediate feed-forward layers or certain
transformer blocks, to reduce the computation
complexity. This is carried out after training and it
is refined by fine-tuning to regain accuracy.
Concurrently, the training of a model performs
Quantization-AwareTraining (QAT) whereby less-
precise operations (e.g. 8-bits integer over 32-bits
floating-point) are emulated. In contrast to post-
training quantization, QAT enables the model to

adjust itself to low-precision arithmetic at the very
training time which results in a high level of
numerical stability and negligible loss in the
accuracy of predictions. Combining pruning and
QAT leads to much more reduced model size and
inference speed at no cost to performance.

Knowledge Distillation

Knowledge distillation is applied to preserve the
representational capability of the low weight
TransDetect model. The teacher model is a bigger
one of high capability (e.g., Swin Transformer)
guiding the student model (the TransDetect) to
acquire finer attention mechanisms and semantic
feature representations. The student copies
softened output probabilities and internal feature
maps of the teacher during the distillation. This not
only increases the generalization abilities of the
student model but also makes it be able to inherit
some of the accuracies advantages of a
significantly deeper and complex model without
the computation cost.

Deployment Optimization with ONNX and
TensorRT

To the practical use, the TransDetect model
trained and optimized is exported to Open Neural
Network Exchange (ONNX) format. ONNX gives
interoperability between platforms and inference
engines. The model is para-optimized (increased
running speed) to be deployed on Nvidia platforms
by TensorRT, SDK which provides layer fusion,
precision calibration (FP16/INT8), kernel auto-
tuning, and memory reuse. Such optimizations lead
to zero-latency and a boosted throughput, and thus
the model can be used to perform real-time edge
inference with minimal power consumption.
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Figure 3. Optimization and Deployment Pipeline for the TransDetect Model

4. METHODOLOGY

4.1 Model Architecture: TransDetect
TransDetect architecture is a hybrid vision
transformer specifically designed to provide a high
balance between computing efficiency and
detection accuracy especially with real-time
performance on edge devices. As opposed to CNN-
based information partition-based detectors that
make use of local receptive fields, TransDetect is
based on a hybrid of convolutional embeddings

and transformer-based attention mechanisms to
enable global semantic reasoning, as well as local
feature extraction. The model is composed of
modules and consists of four major processes: the
Patch Embedding, Transformer Encoder, Token
Pooling, Transformer Decoder stages.

Patch Embedding Layer
The initial part of the model is a preprocessing of
the input image into the form of a series of token
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representations. The image is cut into square-sized
non-overlapping patches (where 16 16 is the
common value) that then is projected into the
latent embedding space. TransDetect does not
have a simple linear projection (like the standard
ViTs), but rather a convolutional projection head
that allows us to capture local visual features by
retaining spatial hierarchies. This tokenization
itself is a convolutional tokenizer that acts as a
shallow CNN accounting each patch to a low-
dimensional token embedding and then
representing the first stage of the transformer
pipeline. This is essential in lowing dimensionality
of the input at an early stage in the network, but
re-keeping important low-level information.

Transformer Encoder Blocks

Upon tokenization, the patches (ak.a., image
patches) embedded in the image are then passed
in a series of Transformer Encoder blocks,
modeled similarly to extract and augment
contextual information in a stepwise manner. The
three major components of every encoder block
are Multi-Head Self-Attention (MHSA), Layer
Normalization, and Feed-Forward Networks
(FFNs). MHSA mechanism allows each token to
focus on all the other tokens at the sequence, thus
capturing long-term dependencies and providing
an unironic glimpsing of visual relationships
within an image on a global scale. This becomes
especially relevant in object detection, when the
spatial relation and relations between objects are
important to localize and classify the objects
accurately. Before and after each attention and
feed-forward operation, Layer Normalization is
used to improve the stability of the training
process and help to quicken convergence and
counter the problem of gradient vanishing. FFN
module comprises two layers of linear
transformations with a GELU (Gaussian Error
Linear Unit) activation in between to induce non-
linearity to boost the representational power of
the encoder. These pieces fused enable the
encoder to generate a dense collection of

\

hierarchically organized features that
simultaneously code local textures and high
contextual regularities, which will feed the

successful decoding of objects in subsequent
levels.

Token Pooling Mechanism

To better improve its efficiency, TransDetect uses
an adaptive token pooling layer between encoder
and the decoder stages. This mechanism chooses
or combines a few tokens, which keep the most
significant features in downstream object
recognition. This biased elimination of tokens
helps make the decoder less taxing on the
computational power although it does not
influence performance in terms of accuracy.
Depending on the constraints of deployment, token
pooling may be obtained by attention based
scoring, clustering, or by entropy based selection
criteria.

Transformer Decoder Blocks

A stack of Transformer Decoder blocks forms the
final stage of the architecture, by decoding the
vector representation of image into well
structured object-level predictions. The decoder
can work with a set of learned queries on object
queries and these object queries are placeholders
to the possible objects in the scene. This is
achieved through cross-attention whereby these
queries engage with the token produced by the
encoder to realize and extract features specific to
objects. These features are in turn passed through
other self-attention and feed-forward layers with
normalization as the decoder tries to improve the
representation. Lastly, every query will generate a
bounding box and a score prediction of classes,
which allows object detection directly without
involving region propositions or anchor boxes a
major innovation adapted and optimized by
TransDetect based on DETR. Its scalability and
optimization maintain its modular structure that
might be utilized in both the cloud and edge
computing environments.
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Figure 4. Layered Architecture of the Proposed TransDetect Model for Real-Time Object Detection
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4.2 Model Optimization Pipeline

Approximately nine different types of optimization
strategies are also incorporated in the training and
deployment pipeline since doing so is needed in
order to support the real-time deployment of the
proposed TransDetect model on edge units with
imperfect compute resources and memory
requests. Quantization-Aware Training (QAT) is
one of the main methods which lowers the
computational precision of the model in 32-bit
floating point (FP32) form; it projects the
representations to 8-bit integer (INT8). Unlike

post-quantization quantization, QAT involves the
quantization effects when training the model
explicitly, so a model can learn and adapt to the
limited numerical precision. Such technique
carries insignificant loss of the detection accuracy
with the memory footprint and inference speed
being reduced substantially. QAT is also
compatible with low-power hardware accelerators
(TensorRT and TFLite), and thus it can meet
requirements of real-time object detection on edge
devices such as the Nvidia Jetson Nano, ARM
Cortex-A processors, and other embedded systems.

| Model |
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Pruning I

JQuantization-Aware
| Training (QAT)
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o

»{ Distilation ]

[ Final Optimized Model ]

Figure 5. Model Optimization Pipeline

To supplement the quantization, a structured
pruning is used to store those portions of the
architecture that remove the unnecessary and
costly to compute components. This involves
dropping the less important attention heads of the
Multi-Head Self-Attention modules as well as
dropping the redundant dimensions in the feed-
forward layers. Structured pruning does not just
shrink the parameters and FLOPs (floating point
operations), it also simplifies the architecture of
the models so that they can infer at a higher speed
without shrinking the capabilities that a model
represented. Knowledge distillation is also used in
the training to make sure that the final working
model has a decent performance level. Here, a
more powerful transformer model, e.g. Swin
Transformer-Large, is used as the teacher and
delivers soft supervision: the probability of each
class and attention map. This teacher is composed
of the larger TransDetect- the smaller TransDetect
which serves as a student model is trained to
imitate the outputs produced by the teacher, which
endows its generalization capability and its small-

feature representations to the student. This triple
process of optimization, which includes QAT,
pruning, distillation, provides the architecture light
weight and efficient yet high accuracy according to
the demands of careful object detection in the real-
world.

4.3 Deployment and Evaluation Setup

In order to reaffirm the practicality of the
proposed TransDetect model, massive deployment
and testing trials were carried out on a variety of
the edge and embedded hardware. These are the
Nvidia Jetson Nano, boasting of a quad-core ARM
Cortex-A57 central processing unit (CPU) and a
128-core Maxwell graphics processing unit (GPU);
the Raspberry Pi 4, which has a quad-core ARM
Cortex-A72 CPU; and Intel NUC, an inference
hardware that is more powerful as it is a compact
desktop-grade benchmark. These platforms are
selected to encompass a wide range of resource
limited computing platforms typical to robotics,
smart surveillance, and autonomous edge
programs.
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Figure 6. Comparative Evaluation of TransDetect Model on Edge Devices

To use the TransDetect model in deployment, it
was converted to ONNX (Open Neural Network
Exchange), which is cross-platform compatible and
allows optimizing the translation into edge
inference toolchains. TensorRT was the backend
runtime on Nvidia hardware optimized for
hardware-aware graph optimizations, or layer
fusion and precision calibration (INT8 and FP16)
and kernel tuning. To deploy Raspberry Pi, the
model was saved in .tflite (TensorFlow Lite)
format and run on TFLite interpreter intended to
run on ARM-based applications. Platform-specific
profiling tools like the Jetson Stats (NVIDIA) or
timing utilities based on Linux are used to perform
performance benchmarking taking real-time
inference measures under controlled ambient
conditions.

The project used four essential metrics to carry out
the evaluation; Top-1 detection accuracy (mean
Average Precision or mAP), inference latency per
frame (in milliseconds), Frames per Second (FPS)
as a measure of throughput, and model size (in
megabytes) to meet the efficiency required in
storage. The findings revealed that although the
overall optimized TransDetect model has a rather
large number of parameters to be considered
(more than half a million), its performance is
characterized by a high level of trade-off between
the model speed of inference and the quality of
detection, maintaining a consistent checked value
of under 30 ms with the measured FPS across all
platforms at over 25. That enables TransDetect to
be a feasible and scalable answer to embedded
vision work with next-generation computing
systems where speed and accuracy is critical.

Table 1. Performance Metrics of TransDetect across Embedded Platforms

Platform mAP@0.5 (%) Latency (ms) FPS | Model Size (MB)
Jetson Nano 81.3 29 28 14.3
Raspberry Pi 4 80.7 34 24 14.3
Intel NUC 82.1 18 41 14.3

5. RESULTS AND DISCUSSION

The proposed TransDetect model was tested and
used as a comparison to existing two
representatives of well-known benchmarks, the
lightweight, state-of-the-art CNN-based detector
YOLOv5s and the transformer-based
groundbreaking DETR-based detector. The

simulations were executed on the MS COCO
dataset under four major performance indicators,
i.e. mean of Average Precision (mAP@0.5),
inference latency (ms), model size (MB) and
Frames Per Second (FPS) on the Nvidia Jetson
Nano platform. Table 1 shows the results of this
comparative inquiry.

Table 2. Comparative Performance Analysis of Object Detection Models on Edge Device (Jetson Nano)

Model mAP@0.5 | Latency (ms) Model Size (MB) FPS (Jetson Nano)
YOLOv5s 79.8 36 17.1 21

TransDetect 81.3 29 14.3 28

DETR 82.1 92 45.6 7
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The table reveals that TransDetect is more efficient
and has a higher detection rate and lower delay
time than YOLOv5s since TransDetect has an mAP
of 81.3 percent and a shortened inference period
of 29 milliseconds instead of 38 milliseconds per
frame. This signifies a nearly 5.4 percent gain in
precision and 19.4 percent gain in latency, and

Metric Values

YOLOv5s

smaller model dimension (14.3 MB vs 17.1 MB).
When it comes to throughput, TransDetect can
process up to 28 frames a second on Jetson Nano,
whereas YOLOv5s can only provide 21 FPS. This
makes it very suitable towards being used in real-
time edge computing like autonomous navigation
and live surveillance.

EE MAP@0.5 (%)
B Latency (ms)
m FPS

mmm Model Size (MB)

TransDetect

Object Detection Models

Figure 7. Performance Comparison of TransDetect, YOLOv5s, and DETR on Jetson Nano

Comparatively, DETR obtains a slightly higher
accuracy (82.1% mAP), but has severe
shortcoming of worse latency and model size,
inference falls between 92 ms and 45.6 MB
memory usage, therefore, unfavorable to use in
low-power implementation. The fact that Jetson
Nano has a poor FPS rate of 7 also shows that it is
limited when it comes to tasks that require time.
The results support the fact that TransDetect
represents an optimal tradeoff between detection
accurateness and computational efficiency and is
therefore very competitive as far as the next-
generation object detection systems on embedded
devices are concerned.

6. CONCLUSION

In the current work, we introduced our lightweight
and performant transformer-based object
detection framework named TransDetect suited to
execution in real-time in next-generation
computing frameworks. In contrast to the
established CNN-based detectors and intensive-
calculating  transformers models (DETR),
TransDetect, because of a well-balanced structure,
provides a reasonable balance between accuracy,
speed, and resource consumption. The model ably
features the local and global features due to the
use of convolutional tokenization, hierarchical self-
attention models and cross-attentive decoder
hence the accurate object localization and

classification. We also incorporated state-of-the-
art optimization strategies such as quantization-
aware training, structured pruning, and knowledge
distillation and deployed them on a low-power
edge device such as Jetson Nano and Raspberry Pi
through ONNX and tensorRT toolchains with high-
performance inference performance. Experimental
analysis showed that TransDetect achieves not
only better mAP and latency compared to
lightweight models like YOLOv5s but also much
smaller model size and computation cost, which
makes it very practical when used on embedded
vision. Future work will also include use of this
architecture with temporal attention on video
based detection, adaptive token pruning allowing
even more efficiency and deployment to other
newer platforms like ARM Cortex-M micro
controllers and RISC-V, and overall expanding the
real-world possibilities and utility of transformer
based object detection systems.
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