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 To overcome this problem of the traditional digital processor in terms of 
energy and latency, neuromorphic computing developed as a brain-
based architecture to process the edge artificial intelligence (AI). The 
paper proposes a design and analysis of neuromorphic hardware 
spiking neural network proposals in CMOS and memristor technologies 
towards real-time, low-power, AI inference. Performance benchmarks 
were simulation along circuit and system levels (e.g. Cadence, LTSpice, 
Brian2) and in terms of energy consumption, latency, accuracy rate of 
classification and chip area. Data results indicate that the neuromorphic 
systems are capable of realizing an energy-saving up to 60 percent and 
latency improvement of more than 50 percent greater than the 
traditional convolutional neural networks (CNNs), with an insignificant 
accuracy compromise of about 5-7 percent only. Works based on 
memristors demonstrated a better energy efficiency and integration 
density, although CMOS-based works were more stable in time. These 
results represent the feasibility of using neuromorphic hardware in the 
next generation edge field of autonomous sensing, robotics and 
embedded electronics. The paper ends off with future direction towards 
scalable integration, on chip learning capabilities and fabrication 
progressions. 
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1. INTRODUCTION 
Increasing applications of the Internet of Things 
(IoT), wearable health monitors, and autonomous 
robotics, and the associated rapid growth of 
intelligent edge systems have further stimulated 
the demand of energy-efficient, real-time artificial 
intelligence (AI) computation. The traditional 
architecture of the CPUs and GPUs units are 
inapplicable in these environments as they are 
power, memory and processor limited thus being 
inefficient. Encapsulation of processing units and 
memory by the Von Neumann bottleneck puts 
forth both extensive data transportation and 
latency problems, resulting in high energy cost 
during the inference operation. 
To overcome these limitations, neuromorphic 
computing has developed as a brain-inspired meta-
programming technology that bypasses the 
difficulties using event-driven, asynchronous, and 
massively parallel processing and computing 

mechanisms (Davies et al., 2018; Merolla et al., 
2014). Scaling up spiking neural networks (SNNs) 
on notable hardware platforms (e.g., IBM 
TrueNorth (Merolla et al., 2014), Intel Loihi 
(Davies et al., 2018), and SpiNNaker (Furber et al., 
2014)) has proven it possible. They are effectively 
used in sparse, temporal data stream processing 
and drink much less energy in comparison with the 
typical deep learning accelerators. 
After the last few years, researchers have focused 
on setting up miniaturized neuromorphic 
hardware that uses edge-AI applications. The 
CMOS implementation provides an appealing 
system because of its maturity in a process and 
stability features (Indiveri et al., 2011; Wu et al., 
2023). At the same time, memristor-based synaptic 
arrays have exclusively attracted consideration 
because of the provision of non-volatile memory, 
high-density integrations, and provision of in-
memory computational capacities (Zidan et al., 
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2018). These new hardware joint storage and 
computation in a single unit, allowing inference in 
real time with low power consumption. 
These uses of architectures are important, as real-
world application domains attest: e.g., the 
wearable healthcare market is expected to be 
worth more than USD 150 billion in 2028 (Fortune 
Business Insights, 2023), and here we need always-
on, low-latency and battery-efficient-AI. Likewise, 
autonomous sensing of drones and intelligent 
vehicles requires small and responsive hardware 

that can justify spatial and temporal information in 
real-time. 
The work will add a benchmarking framework of 
unified neuromorphic hardware evaluation of both 
CMOS neuromorphic and memristor-based SNNs 
at the circuit and system level. Measuring the 
energy consumption, latency, classification 
performance and silicon area, we believe that we 
can provide a practical and comparative analysis 
that can serve as an example of how to deploy 
neuromorphic computing within the future edge AI 
systems. 

 

 
Figure 1. Neuromorphic System Architecture and Application Mapping 

Block diagram illustrating the neuromorphic system overview comprising two core hardware 
implementations: CMOS-based and memristor-based spiking neural network (SNN) architectures. These are 
designed to enable energy-efficient processing for edge AI applications such as autonomous sensors, robotics, 

and IoT nodes. 
 
2. RELATED WORK 
Neuromorphic computing Neuromorphic 
computing has been proposed as an alternative 
computing paradigm based on biological neural 
systems, with event-driven processing, 
asynchronous network communication, and high 
energy efficiency. Within the last 10 years, a 
number of research and industrial projects 
resulted in the emergence of dedicated 
neuromorphic hardware platforms. The most well-
known are IBMs TrueNorth, Intel Loihi, and those 
of Heidelberg University BrainScaleS, with their 
own architectural breakthroughs. 
IBM TrueNorth is one of the first large scale 
neuromorphic processors, comprising 1 million 
neurons and 256 million synapses constructed on 
custom asynchronous digital logic. The 
architecture is optimized to execute SNNs in an 
extremely parallel manner and has shown power 
to be extremely low- measured in picojoules per 
synaptic event. TrueNorth is however application-
specific, only supports fixed models of neurons, 
and cannot learn online, so it is a better fit to static 

inference application at the data center as opposed 
to dynamic edge computing. 
In contrast, Loihi developed by Intel enables real-
time adaptation and supports on-chip learning and 
plasticity, meaning that spike-timing dependent-
plasticity (STDP) and other programmable 
learning rules could be used. Loihi combines 128 
neuromorphic cores, each of which includes 
programmable leaky integrate-and-fire (LIF) 
neurons, and programmable synaptic delays. 
Compared to TrueNorth, Loihi is more flexible, but 
not as low-cost and still needs the complicated 
peripheral stack to perform low-cost ultra-
miniature devices on the edge. 
The Heidelberg university comes up with 
BrainScaleS that presents a mixed-signal 
neuromorphic architecture that can be used to 
simulate the spiking networks at a faster time 
scale. It takes the analog model of the neuron and 
integrates it with digital communication, 
producing high-throughput simulation, though 
with limited flexibility in deployment, because 
analog circuit noise, and circuit scaling is 
increasingly complex with increasing circuit size. 
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Some new platforms have appeared in the recent 
years filling in the gap between research-level 
systems and commercially viable edge hardware. 
As an example, BrainChip Akida (20212023) is a 
neuromorphic SoC and has a fully digital, event-
driven processing system, able to implement SNNs 
without altering embedded hardware directly on 
the chip and to learn relatively low-cost (Chen et 
al., 2023). Likewise, ODIN, which was designed by 
CEA-Leti, is a 28nm digital SNN accelerator that 
supports programmable synaptic plasticity and 
hierarchical event routing, so it will be used as an 
ultra-low-power sensory processor (Frenkel et al., 
2022). These frameworks provide hardware-in-
the-loop execution directly, allowing real-time edge 
deployment of audio, gestures recognition, an 
anomaly detection applications. 
Notwithstanding the mentioned improvements, 
the lack of comparative works concerning CMOS, 
and memristor-based neuromorphic architectures 
under standard edge AI workloads, is quite 
observable. Comparatively little work offers 
benchmarking of a range of design metrics 
including energy per inference, area efficiency, 
latency and accuracy-especially based on unified 
simulation frameworks or real-world datasets. The 
research itself was conducted to fill this gap by 
providing head-to-head comparisons both via 
circuit level and system level tools with functional 
benchmarks (MNIST/N-MNIST). 
 
3. METHODOLOGY 
3.1 Architecture Overview 
The proposed research is aimed at the creation of 
two different neuromorphic hardware systems, 
specialized in solving real-time edge AI tasks on 
low power. The first work is an architecture 

constructed by a Complementary Metal-Oxide-
Semiconductor (CMOS) technology implementing 
an algorithm based on biologically inspired Leaky 
Integrate-and-Fire (LIF) neuron model with the 
learning mechanism as Spike-Timing Dependent 
Plasticity (STDP). With the help of a 65nm 
standard CMOS technology node highly used in 
mixed-signal low-power design, the architecture is 
achieved. The network uses the current-mode 
integrators, comparators and capacitive memory 
units in order to simulate temporal behavior of 
firing neurons and synaptic modifications. The 
hybrid analog/digital model allows this emulation 
of the behavior of neural firing and synapses 
plasticity, with low power consumption and some 
degree of noise immunity and tolerance of process 
variation. 
In the second architecture, the memristor-based 
array of synapses is used, in which A memristor 
has been assigned a programmable synaptic 
weight within the crossbar array structure. 
Memristors feature non-switching, resistive 
memory, much like synaptic potentiation and 
depression, able to provide high density 
integration, and eliminating refresh operations, 
weight retention for close to near-instant access. 
This architecture takes advantage of the analog 
memory properties of memristors to compute 
vector-matrix products in constant time, and 
would be very efficient at low-latency 
neuromorphic inference. The crossbar allows 
scaled true-interconnectivity and can be compactly 
implemented, it can scale large networks of 
neurons, thus enabling parallel processing of many 
spikes with meaningful area and deep-submicron 
leakage power savings. 

 

 
Figure 2. Comparative Architecture of CMOS-Based and Memristor-Based Neuromorphic Hardware 

Block diagram illustrating the architectural components of two neuromorphic hardware implementations: a 
CMOS-based spiking neural network (SNN) using LIF neurons and analog circuitry, and a memristor-based 

SNN utilizing crossbar arrays and non-volatile synaptic weights. Both architectures process spike-based 
input and output for real-time edge AI applications such as robotics, IoT devices, and autonomous sensors. 
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3.2 Simulation Tools 
The implementation for benchmarking, accurate 
modeling, and simulation of the proposed 
neuromorphic designs are fulfilled with the use of 
a combination of the system-level and the circuit-
level tools. CMOS-based architecture is created and 
tested in Cadence Virtuoso, popular electronic 
design automation (EDA) program used in the 
development and testing of analog/mixed-signal 
simulations. CAP structures The CMOS neuron 
networks, synapse model, and logic made available 
to support them are synthesized along with 
verifications by schematic-level simulation, and 
layout-versus-schematic (LVS) verification. The 
Spectre SPICE simulation engine is used to extract 
power, delay and area characteristics. 
In the case of membrane based SNN, behavioral 
simulations and transient simulations of 
memristive synapses are done in LTSpice. Resistive 

switching models, and non-linear conductance 
paths, are also implemented in custom SPICE 
models, in order to implement precise memristor 
characteristics; hysteretic behavior and multi-state 
programmability. By means of these simulations, 
analysis of energy per switching event, write/read 
endurance, and effect of variability may be 
performed. 
Functionally at the network level both 
architectures are proven and verified with the 
Brian2 simulator in Python that is an extensible 
platform in simulating spiking neural networks. 
The standard datasets, including MNIST 
(handwritten digits) and N-MNIST (neuromorphic 
vision data), are used to assess benchmarking due 
to their popularity in the assessment of low-power 
SNN models. This allows the direct comparison of 
accuracy, latency and the behavior of computation 
based on spikes across architectures. 

 

 
Figure 3. Hierarchical Simulation Flow for Neuromorphic System Evaluation 

This layered diagram presents an alternate visualization of the neuromorphic hardware evaluation process. 
It illustrates the integration of circuit-level modeling (Cadence Virtuoso and LTSpice), network-level SNN 

construction using Python’s Brian2 simulator, and final benchmarking using MNIST and N-MNIST datasets. 
Key outputs at each stage include switching energy, delay, classification accuracy, and inference energy, 

enabling comparative assessment of CMOS and memristor-based designs. 
 
3.3 Evaluation Metrics 
The neuromorphic systems are assessed by a full 
experiments suite of performance metrics linking 
to edge AI deployment. These include: 

• Energy Consumption (picojoules per spike 
event): This metric is the energy it took to 
generate, propagate and process a spike in the 
network. This measurement is vital in 
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determining power-efficient capability of the 
hardware particularly in the case of always-on 
sensor and inference systems. 

• inference Latency (milliseconds): Refers to 
the time that it takes the system to classify 
input or make an epitome of a neural 
computation breakdown. Real-time 
applications many require lower latency 
robotics, autonomous driving and health 
monitoring. 

• Classification Accuracy (percentage): The 
measure of the work of the neuromorphic 
network on such benchmark sets as MNIST 
and N-MNIST. SNNs might have a minor 
decrease in accuracy as opposed to standard 
deep learning structures, but the trade-off is 
worth it to the extent to which they are 

efficient and useful in dealing with temporal 
information. 

• Chip Area (square millimeters): it describes 
the amount of silicon (in square millimeters) 
used to complete the circuitry of the neuron 
and synapse. Cost-sensitive and small devices 
with edge applications benefit because 
smaller area is preferable in integrating 
several AI accelerators on the same die. 

In summary, these metrics collectively offer an 
extensive overview of trade-offs between power, 
performance and silicon resource use which are 
actually important when designing edge-
computing applicable neuromorphic hardware.The 
reported benchmarking results concur; as 
enumerated in Table 1, there were explicit trade-
offs between accuracy and energy expenditure. 

 
Table 1. Evaluation Metrics for Neuromorphic Hardware Performance 

Metric Unit Purpose 
Energy Consumption pJ/spike Quantifies energy per neural firing event; 

critical for power-aware systems 
Inference Latency ms Measures real-time response speed for 

classification tasks 
Classification Accuracy % Evaluates recognition performance on 

benchmark datasets (e.g., MNIST) 
Chip Area mm² Indicates physical footprint; relevant for 

integration in edge devices 
 
4. Experimental Results and Discussion 
As histograms in Table 2 and observe in Figure 4, 
the experimental results proved the evident 
performance advantage of the suggested 
neuromorphic architectures over an obsolete 
digital CNN design in terms of edge AI. Both a 
CMOS-based and memristor-based SNN system 
record large improvements in energy and latency, 
two major prerequisites of real-time embedded 
inference. 
Architecture based on memristor showed the least 
energy use per inference of 0.9 1uJ and that was 
85.7% less than baseline CNN (6.3 1uJ). It also took 
up the least amount of chip area (2.1 mm 2 ) 
implying theuse of high integration density and 
minimal applications, such as in miniaturization. 
Moreover, it had an inference latency of 8 ms, i.e. 
~61.9x faster than the CNN baseline (21 ms), and 
thus suitable to applications with strict processing 
deadlines like robotics or health monitors. 
Compared to the CNN, the CMOS-based 
architecture reduced energy consumption by 
~71.4 percent and improved latency by ~52.4 
percent or so although this is a bit lower when 
compared to the memristor model. In addition to 
that, it provided higher immunity to processships 
and environmental noise by using the simplicity 
and maturity of established CMOS fabrication 
processes. The chip area (3.2 mm 2 ) was smaller 

than digital CNN, yet larger than memristor-based 
solution. 
With respect to the accuracy, the digital CNN 
showed the best results (98.1%) and the 
neuromorphic systems have shown ~57 percent 
decline in the classification performance (91.2 
percent (CMOS) and 92.5 percent (memristor) on 
the MNIST dataset). This is a reasonable trade-off 
considering the alleviating energy efficiency, 
response time and physical footprint. 
 
4.1 Performance Summary 
Its non-volatile memory, crossbar scalability, and 
analog in-memory computing make memristor-
based system particularly suitable to ultra-low-
power applications. Conversely, the CMOS-based 
SNN is compromised between performance and 
resilience, so such a compromising could be 
applicable to situations where it is required to 
achieve the process reliability above all other 
measures. 
The power density (e.g., mW/mm 2 ) and the cost 
of fabrication per unit, as determined by the 
estimate, could in addition be useful in 
comparative analysis, assuming that it is provided. 
As an example, memristor arrays can be more 
energy-efficient per unit area, but fail to achieve 
uniformity of manufacturing, but CMOS circuits 
enjoy easier manufacture by a more established 
collection of foundries. Combining such 
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considerations may help establish priorities to 
select architecture to be applied to particular 
industry use cases. 
Comparison of power-performance results of an 
energy per inference, latency, classification 
accuracy (MNIST), and approximate silicon area of 
CMOS-based and memristor-based neuromorphic 

systems compared with a basic digital CNN. The 
advantages of memristor-based architecture 
include the lowest energy efficiency and (Table 2) 
energy per inference, as well as the compactness. 
The strongest point of the CNN remains the 
accuracy level. 

 
Table 2.Performance Comparison of CMOS-Based, Memristor-Based, and Digital CNN Architectures 

Metric CMOS-Based Memristor-Based Baseline (Digital CNN) 
Energy per Inference 1.8 µJ 0.9 µJ 6.3 µJ 
Latency 10 ms 8 ms 21 ms 
Accuracy (MNIST) 91.2% 92.5% 98.1% 
Area (Est.) 3.2 mm² 2.1 mm² 4.8 mm² 

 

 
Figure 4. Graphical Comparison of Neuromorphic and Conventional Architectures 

Bar charts illustrating performance metrics of CMOS-based, memristor-based, and CNN architectures. 
Metrics include (a) energy per inference (µJ), (b) latency (ms), (c) classification accuracy (%), and (d) chip 

area (mm²). Memristor-based designs outperform in energy and area, while CNNs show superior accuracy at 
the cost of power and size. 

 
4.2 Discussion 
The performance of the SNN architecture with 
memristors is superior in terms of energy 
consumption as well as real estate occupied in 
silicon. This is most especially because of the non-
volatility of memristors and the compactness of 
crossbar array allows to perform parallel vector-
matrix multiplications using little power leakage. It 
developed a reduction in energy consumption of 
more than 85 percent relative to digital CNN and 
close to 50 percent relative to the CMOS based 
implementation. 
In contrast, more resilience against environmental 
noise and processes variations is given by the 
CMOS-based architecture owing to its well 

established fabrication process and strong analog-
digital integration. It uses more energy than the 
memristor based design, but nonetheless 
outperforms the baseline CNN in energy as well as 
latency. Although CNN baseline leads in the 
classification accuracy to 98.1%, it comes at a very 
high energy and area consumption cost, which not 
only makes it usable in limited-power edge 
deployment applications. The two neuromorphic 
systems have a small accuracy reduction (~57%) 
which is reasonable taking into account the huge 
power and latency improvement. In general, the 
two implementations of neuromorphic are quite 
compliant with energy-constrained edge 
applications in AI, where the system implemented 
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using the memristor is more hardware-dense, 
power-efficient, whereas that done in CMOS yields 
stronger noise immunity and a design stability 
advantage. 
 
5. Limitations 
Although the suggested neuromorphic structures 
achieve better energy effectiveness and latency, 
there are limits that have to be admitted. First, 
memristor designs are susceptible at the device 
level to variability and non-ideal AP characteristics 
as well as endurance which can compromise the 
stability and repeatability of a synaptic weight 
during extensive operation. This inconsistency 
brings in challenges to fabrication and long-term 
deployment. Second, training of spiking neural 
networks (SNNs) is an altogether complicated task 
because the learning algorithms are immature and 
gradient-friendly, and encoding the input data to 
ideal spike trains becomes hectic. This constrains 
the general size of the SNNs in deeper and more 
complex inference functions. Third, the existing 
experimental conditions are based on offline, static 
datasets like MNIST and N-MNIST that does not 
have the full range of representation of the 
variability, noise, and time-varying nature of edge-
applications. 
Future research can therefore aim at developing 
hybrid CMOS-memristor integration approaches 
that include in-built calibration procedures that 
could cancel out device-level discrepancies. Also, 
connecting to the works on biologically plausible 
on-chip learning methods Biodifferentially Brine 
Trust,e.g., eSpike-Timing Dependent Plasticity 
(eSTDP), surrogate gradient descent, or 
reinforcement learning could enhance the 
flexibility and trainability of SNNs. Last but not 
least, testing of the proposed architectures against 
real-time, event-driven data (e.g., DVS Gesture or 
N-Caltech101) on dynamic neuromorphic vision 
sensors (DVS) would ensure a more concrete 
extrapolation into the feasibility of their practical 
application in edge devices. 
 
6. Future Directions 
Although the current review has established 
feasibility of CMOS and memristor-based 
neuromorphic solutions at the low-power edge AI 
domain, further advancement in the area can build 
on that basis in a number of meaningful ways. 
Among these opportunities is how to integrate on-
chip learning mechanisms, enabling real-time 
adaptation, and continuouslearning without the 
need to rely upon further retraining by using on-
chip learning mechanisms, whether adaptive 
spike-timing-dependent plasticity (STDP), 
reinforcement-based learning or surrogate 
gradient methods. Still another direction is the 3D 
stacking of neuromorphic cores which have the 

potential to much improve parallelism, and reduce 
interconnect delays and energy efficiency in 
particular when used in high-density memristive 
(network) arrays. Furthermore, by deploying these 
architectures into the biomedical wearables, 
prosthetic systems, and the edge robotics, it is 
possible to open up new real-life applications 
where ultra-low power, low-latency smarts matter 
immensely. Last of all, the hybrid digital-
neuromorphic co-processors where deterministic 
control is actioned in digital logic and the cognitive 
functions occur on neuromorphic modules will 
provide an adaptable task-specialized processing 
ecosystem to future embedded intelligent systems. 
 
7. CONCLUSION 
In this research project, the researcher focused on 
developing and testing the CMOS and memristor-
based neuromorphic computing architectures that 
would support energy-efficient artificial 
intelligence (AI) on the edge. Using both a circuit-
level model and a multi-area system-level model of 
a spiking neural network, we showed that 
neuromorphic hardware could dramatically 
decrease energy, latency, and even maintain 
accuracy similar to traditional digital CNN 
architecture, with just a few trade-offs. We 
managed to demonstrate through our 
experimental analysis that a memristor based 
solution has the lowest energy consumption and 
the least silicon in terms of area thus making it a 
very attractive solution in compact, ultra-low-
power systems. In the meantime, the CMOS based 
architecture offered strong performance together 
with the ability to fit in with grown fabricators. The 
two methods confirm the viability of 
neuromorphic systems in supplying real time, 
embedded AI systems involving IoT devices, 
autonomous sensors and wearables. 
The importance of these results is in the increasing 
importance of brain-inspired hardware in the post-
Moore world of computing. Neuromorphic systems 
will become a staple technology of the next 
generation of intelligent electronics as its training 
algorithm obstacles, integration with hardware, 
and inter-device inconsistencies get solved. Future 
directions will be on chip learning, real-time 
adaptation, and varying scaling to a real-life 
scenario. 
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