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To overcome this problem of the traditional digital processor in terms of
energy and latency, neuromorphic computing developed as a brain-
based architecture to process the edge artificial intelligence (AI). The
paper proposes a design and analysis of neuromorphic hardware
spiking neural network proposals in CMOS and memristor technologies
towards real-time, low-power, Al inference. Performance benchmarks
were simulation along circuit and system levels (e.g. Cadence, LTSpice,
Brian2) and in terms of energy consumption, latency, accuracy rate of
classification and chip area. Data results indicate that the neuromorphic
systems are capable of realizing an energy-saving up to 60 percent and
latency improvement of more than 50 percent greater than the
traditional convolutional neural networks (CNNs), with an insignificant
accuracy compromise of about 5-7 percent only. Works based on
memristors demonstrated a better energy efficiency and integration
density, although CMOS-based works were more stable in time. These
results represent the feasibility of using neuromorphic hardware in the
next generation edge field of autonomous sensing, robotics and
embedded electronics. The paper ends off with future direction towards
scalable integration, on chip learning capabilities and fabrication
progressions.

1. INTRODUCTION

mechanisms (Davies et al, 2018; Merolla et al,,

Increasing applications of the Internet of Things
(IoT), wearable health monitors, and autonomous
robotics, and the associated rapid growth of
intelligent edge systems have further stimulated
the demand of energy-efficient, real-time artificial
intelligence (AI) computation. The traditional
architecture of the CPUs and GPUs units are
inapplicable in these environments as they are
power, memory and processor limited thus being
inefficient. Encapsulation of processing units and
memory by the Von Neumann bottleneck puts
forth both extensive data transportation and
latency problems, resulting in high energy cost
during the inference operation.

To overcome these limitations, neuromorphic
computing has developed as a brain-inspired meta-
programming technology that bypasses the
difficulties using event-driven, asynchronous, and
massively parallel processing and computing
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2014). Scaling up spiking neural networks (SNNs)
on notable hardware platforms (e.g, IBM
TrueNorth (Merolla et al, 2014), Intel Loihi
(Davies et al., 2018), and SpiNNaker (Furber et al.,
2014)) has proven it possible. They are effectively
used in sparse, temporal data stream processing
and drink much less energy in comparison with the
typical deep learning accelerators.

After the last few years, researchers have focused
on setting up miniaturized neuromorphic
hardware that uses edge-Al applications. The
CMOS implementation provides an appealing
system because of its maturity in a process and
stability features (Indiveri et al., 2011; Wu et al,,
2023). At the same time, memristor-based synaptic
arrays have exclusively attracted consideration
because of the provision of non-volatile memory,
high-density integrations, and provision of in-
memory computational capacities (Zidan et al,,
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2018). These new hardware joint storage and
computation in a single unit, allowing inference in
real time with low power consumption.

These uses of architectures are important, as real-
world application domains attest: e.g, the
wearable healthcare market is expected to be
worth more than USD 150 billion in 2028 (Fortune
Business Insights, 2023), and here we need always-
on, low-latency and battery-efficient-Al. Likewise,
autonomous sensing of drones and intelligent
vehicles requires small and responsive hardware

CMOS-Based SNN Hardware

that can justify spatial and temporal information in
real-time.

The work will add a benchmarking framework of
unified neuromorphic hardware evaluation of both
CMOS neuromorphic and memristor-based SNNs
at the circuit and system level. Measuring the
energy consumption, latency, classification
performance and silicon area, we believe that we
can provide a practical and comparative analysis
that can serve as an example of how to deploy
neuromorphic computing within the future edge Al
systems.
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Figure 1. Neuromorphic System Architecture and Application Mapping
Block diagram illustrating the neuromorphic system overview comprising two core hardware
implementations: CMOS-based and memristor-based spiking neural network (SNN) architectures. These are
designed to enable energy-efficient processing for edge Al applications such as autonomous sensors, robotics,
and IoT nodes.

2. RELATED WORK

Neuromorphic computing Neuromorphic
computing has been proposed as an alternative
computing paradigm based on biological neural
systems, with event-driven processing,
asynchronous network communication, and high
energy efficiency. Within the last 10 years, a
number of research and industrial projects
resulted in the emergence of dedicated
neuromorphic hardware platforms. The most well-
known are IBMs TrueNorth, Intel Loihi, and those
of Heidelberg University BrainScaleS, with their
own architectural breakthroughs.

IBM TrueNorth is one of the first large scale
neuromorphic processors, comprising 1 million
neurons and 256 million synapses constructed on
custom asynchronous  digital logic.  The
architecture is optimized to execute SNNs in an
extremely parallel manner and has shown power
to be extremely low- measured in picojoules per
synaptic event. TrueNorth is however application-
specific, only supports fixed models of neurons,
and cannot learn online, so it is a better fit to static

inference application at the data center as opposed
to dynamic edge computing.

In contrast, Loihi developed by Intel enables real-
time adaptation and supports on-chip learning and
plasticity, meaning that spike-timing dependent-
plasticity (STDP) and other programmable
learning rules could be used. Loihi combines 128
neuromorphic cores, each of which includes
programmable leaky integrate-and-fire (LIF)
neurons, and programmable synaptic delays.
Compared to TrueNorth, Loihi is more flexible, but
not as low-cost and still needs the complicated
peripheral stack to perform low-cost ultra-
miniature devices on the edge.

The Heidelberg university comes up with
BrainScaleS that presents a mixed-signal
neuromorphic architecture that can be used to
simulate the spiking networks at a faster time
scale. It takes the analog model of the neuron and
integrates it with digital communication,
producing high-throughput simulation, though
with limited flexibility in deployment, because
analog circuit noise, and circuit scaling is
increasingly complex with increasing circuit size.
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Some new platforms have appeared in the recent
years filling in the gap between research-level
systems and commercially viable edge hardware.
As an example, BrainChip Akida (20212023) is a
neuromorphic SoC and has a fully digital, event-
driven processing system, able to implement SNNs
without altering embedded hardware directly on
the chip and to learn relatively low-cost (Chen et
al,, 2023). Likewise, ODIN, which was designed by
CEA-Leti, is a 28nm digital SNN accelerator that
supports programmable synaptic plasticity and
hierarchical event routing, so it will be used as an
ultra-low-power sensory processor (Frenkel et al,,
2022). These frameworks provide hardware-in-
the-loop execution directly, allowing real-time edge
deployment of audio, gestures recognition, an
anomaly detection applications.

Notwithstanding the mentioned improvements,
the lack of comparative works concerning CMOS,
and memristor-based neuromorphic architectures
under standard edge AI workloads, is quite
observable. Comparatively little work offers
benchmarking of a range of design metrics
including energy per inference, area efficiency,
latency and accuracy-especially based on unified
simulation frameworks or real-world datasets. The
research itself was conducted to fill this gap by
providing head-to-head comparisons both via
circuit level and system level tools with functional
benchmarks (MNIST/N-MNIST).

3. METHODOLOGY

3.1 Architecture Overview

The proposed research is aimed at the creation of
two different neuromorphic hardware systems,
specialized in solving real-time edge Al tasks on
low power. The first work is an architecture

constructed by a Complementary Metal-Oxide-
Semiconductor (CMOS) technology implementing
an algorithm based on biologically inspired Leaky
Integrate-and-Fire (LIF) neuron model with the
learning mechanism as Spike-Timing Dependent
Plasticity (STDP). With the help of a 65nm
standard CMOS technology node highly used in
mixed-signal low-power design, the architecture is
achieved. The network uses the current-mode
integrators, comparators and capacitive memory
units in order to simulate temporal behavior of
firing neurons and synaptic modifications. The
hybrid analog/digital model allows this emulation
of the behavior of neural firing and synapses
plasticity, with low power consumption and some
degree of noise immunity and tolerance of process
variation.

In the second architecture, the memristor-based
array of synapses is used, in which A memristor
has been assigned a programmable synaptic
weight within the crossbar array structure.
Memristors feature non-switching, resistive
memory, much like synaptic potentiation and
depression, able to provide high density
integration, and eliminating refresh operations,
weight retention for close to near-instant access.
This architecture takes advantage of the analog
memory properties of memristors to compute
vector-matrix products in constant time, and
would be very efficient at low-latency
neuromorphic inference. The crossbar allows
scaled true-interconnectivity and can be compactly
implemented, it can scale large networks of
neurons, thus enabling parallel processing of many
spikes with meaningful area and deep-submicron
leakage power savings.
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Figure 2. Comparative Architecture of CMOS-Based and Memristor-Based Neuromorphic Hardware
Block diagram illustrating the architectural components of two neuromorphic hardware implementations: a
CMOS-based spiking neural network (SNN) using LIF neurons and analog circuitry, and a memristor-based
SNN utilizing crossbar arrays and non-volatile synaptic weights. Both architectures process spike-based
input and output for real-time edge Al applications such as robotics, [oT devices, and autonomous sensors.
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3.2 Simulation Tools

The implementation for benchmarking, accurate
modeling, and simulation of the proposed
neuromorphic designs are fulfilled with the use of
a combination of the system-level and the circuit-
level tools. CMOS-based architecture is created and
tested in Cadence Virtuoso, popular electronic
design automation (EDA) program used in the
development and testing of analog/mixed-signal
simulations. CAP structures The CMOS neuron
networks, synapse model, and logic made available
to support them are synthesized along with
verifications by schematic-level simulation, and
layout-versus-schematic (LVS) verification. The
Spectre SPICE simulation engine is used to extract
power, delay and area characteristics.

In the case of membrane based SNN, behavioral
simulations and transient simulations of
memristive synapses are done in LTSpice. Resistive

switching models, and non-linear conductance
paths, are also implemented in custom SPICE
models, in order to implement precise memristor
characteristics; hysteretic behavior and multi-state
programmability. By means of these simulations,
analysis of energy per switching event, write/read
endurance, and effect of variability may be
performed.

Functionally at the network level both
architectures are proven and verified with the
Brian2 simulator in Python that is an extensible
platform in simulating spiking neural networks.
The standard datasets, including MNIST
(handwritten digits) and N-MNIST (neuromorphic
vision data), are used to assess benchmarking due
to their popularity in the assessment of low-power
SNN models. This allows the direct comparison of
accuracy, latency and the behavior of computation
based on spikes across architectures.
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Figure 3. Hierarchical Simulation Flow for Neuromorphic System Evaluation
This layered diagram presents an alternate visualization of the neuromorphic hardware evaluation process.
It illustrates the integration of circuit-level modeling (Cadence Virtuoso and LTSpice), network-level SNN
construction using Python’s Brian2 simulator, and final benchmarking using MNIST and N-MNIST datasets.
Key outputs at each stage include switching energy, delay, classification accuracy, and inference energy,
enabling comparative assessment of CMOS and memristor-based designs.

3.3 Evaluation Metrics .
The neuromorphic systems are assessed by a full
experiments suite of performance metrics linking

to edge Al deployment. These include:

Energy Consumption (picojoules per spike
event): This metric is the energy it took to
generate, propagate and process a spike in the
network. This measurement is vital in
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determining power-efficient capability of the
hardware particularly in the case of always-on
sensor and inference systems.

. inference Latency (milliseconds): Refers to
the time that it takes the system to classify
input or make an epitome of a neural
computation breakdown. Real-time
applications many require lower latency
robotics, autonomous driving and health
monitoring.

. Classification Accuracy (percentage): The
measure of the work of the neuromorphic
network on such benchmark sets as MNIST
and N-MNIST. SNNs might have a minor
decrease in accuracy as opposed to standard
deep learning structures, but the trade-off is
worth it to the extent to which they are

efficient and useful in dealing with temporal
information.

. Chip Area (square millimeters): it describes
the amount of silicon (in square millimeters)
used to complete the circuitry of the neuron
and synapse. Cost-sensitive and small devices
with edge applications benefit because
smaller area is preferable in integrating
several Al accelerators on the same die.

In summary, these metrics collectively offer an
extensive overview of trade-offs between power,
performance and silicon resource use which are
actually important when designing edge-
computing applicable neuromorphic hardware.The
reported benchmarking results concur; as
enumerated in Table 1, there were explicit trade-
offs between accuracy and energy expenditure.

Table 1. Evaluation Metrics for Neuromorphic Hardware Performance

Metric Unit Purpose

Energy Consumption pJ/spike | Quantifies energy per neural firing event;
critical for power-aware systems

Inference Latency ms Measures real-time response speed for
classification tasks

Classification Accuracy | % Evaluates  recognition performance on
benchmark datasets (e.g., MNIST)

Chip Area mm? Indicates physical footprint; relevant for
integration in edge devices

4. Experimental Results and Discussion

As histograms in Table 2 and observe in Figure 4,
the experimental results proved the evident
performance advantage of the suggested
neuromorphic architectures over an obsolete
digital CNN design in terms of edge Al Both a
CMOS-based and memristor-based SNN system
record large improvements in energy and latency,
two major prerequisites of real-time embedded
inference.

Architecture based on memristor showed the least
energy use per inference of 0.9 1uj and that was
85.7% less than baseline CNN (6.3 1u]). It also took
up the least amount of chip area (2.1 mm 2 )
implying theuse of high integration density and
minimal applications, such as in miniaturization.
Moreover, it had an inference latency of 8 ms, i.e.
~61.9x faster than the CNN baseline (21 ms), and
thus suitable to applications with strict processing
deadlines like robotics or health monitors.
Compared to the CNN, the CMOS-based
architecture reduced energy consumption by
~71.4 percent and improved latency by ~52.4
percent or so although this is a bit lower when
compared to the memristor model. In addition to
that, it provided higher immunity to processships
and environmental noise by using the simplicity
and maturity of established CMOS fabrication
processes. The chip area (3.2 mm 2 ) was smaller
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than digital CNN, yet larger than memristor-based
solution.

With respect to the accuracy, the digital CNN
showed the best results (98.1%) and the
neuromorphic systems have shown ~57 percent
decline in the classification performance (91.2
percent (CMOS) and 92.5 percent (memristor) on
the MNIST dataset). This is a reasonable trade-off
considering the alleviating energy efficiency,
response time and physical footprint.

4.1 Performance Summary

Its non-volatile memory, crossbar scalability, and
analog in-memory computing make memristor-
based system particularly suitable to ultra-low-
power applications. Conversely, the CMOS-based
SNN is compromised between performance and
resilience, so such a compromising could be
applicable to situations where it is required to
achieve the process reliability above all other
measures.

The power density (e.g, mW/mm 2 ) and the cost
of fabrication per unit, as determined by the
estimate, could in addition be wuseful in
comparative analysis, assuming that it is provided.
As an example, memristor arrays can be more
energy-efficient per unit area, but fail to achieve
uniformity of manufacturing, but CMOS circuits
enjoy easier manufacture by a more established
collection of foundries. Combining such
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considerations may help establish priorities to
select architecture to be applied to particular
industry use cases.

Comparison of power-performance results of an
energy per inference, latency, classification
accuracy (MNIST), and approximate silicon area of
CMOS-based and memristor-based neuromorphic

systems compared with a basic digital CNN. The
advantages of memristor-based architecture
include the lowest energy efficiency and (Table 2)
energy per inference, as well as the compactness.
The strongest point of the CNN remains the
accuracy level.

Table 2.Performance Comparison of CMOS-Based, Memristor-Based, and Digital CNN Architectures

Metric CMOS-Based | Memristor-Based | Baseline (Digital CNN)
Energy per Inference | 1.8 yJ 0.9 yJ 6.3 yJ

Latency 10 ms 8 ms 21 ms

Accuracy (MNIST) 91.2% 92.5% 98.1%

Area (Est.) 3.2 mm? 2.1 mm? 4.8 mm?

Energy per Inference ()

Memristor

Accuracy (MNIST) (%)

60

(%)

a0t
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CMOS

Memristor CNN
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Figure 4. Graphical Comparison of Neuromorphic and Conventional Architectures
Bar charts illustrating performance metrics of CMOS-based, memristor-based, and CNN architectures.
Metrics include (a) energy per inference (1), (b) latency (ms), (c) classification accuracy (%), and (d) chip
area (mm?). Memristor-based designs outperform in enerqy and area, while CNNs show superior accuracy at
the cost of power and size.

4.2 Discussion

The performance of the SNN architecture with
memristors is superior in terms of energy
consumption as well as real estate occupied in
silicon. This is most especially because of the non-
volatility of memristors and the compactness of
crossbar array allows to perform parallel vector-
matrix multiplications using little power leakage. It
developed a reduction in energy consumption of
more than 85 percent relative to digital CNN and
close to 50 percent relative to the CMOS based
implementation.

In contrast, more resilience against environmental
noise and processes variations is given by the
CMOS-based architecture owing to its well

established fabrication process and strong analog-
digital integration. It uses more energy than the
memristor based design, but nonetheless
outperforms the baseline CNN in energy as well as
latency. Although CNN baseline leads in the
classification accuracy to 98.1%, it comes at a very
high energy and area consumption cost, which not
only makes it usable in limited-power edge
deployment applications. The two neuromorphic
systems have a small accuracy reduction (~57%)
which is reasonable taking into account the huge
power and latency improvement. In general, the
two implementations of neuromorphic are quite
compliant  with  energy-constrained edge
applications in Al, where the system implemented
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using the memristor is more hardware-dense,
power-efficient, whereas that done in CMOS yields
stronger noise immunity and a design stability
advantage.

5. Limitations

Although the suggested neuromorphic structures
achieve better energy effectiveness and latency,
there are limits that have to be admitted. First,
memristor designs are susceptible at the device
level to variability and non-ideal AP characteristics
as well as endurance which can compromise the
stability and repeatability of a synaptic weight
during extensive operation. This inconsistency
brings in challenges to fabrication and long-term
deployment. Second, training of spiking neural
networks (SNNs) is an altogether complicated task
because the learning algorithms are immature and
gradient-friendly, and encoding the input data to
ideal spike trains becomes hectic. This constrains
the general size of the SNNs in deeper and more
complex inference functions. Third, the existing
experimental conditions are based on offline, static
datasets like MNIST and N-MNIST that does not
have the full range of representation of the
variability, noise, and time-varying nature of edge-
applications.

Future research can therefore aim at developing
hybrid CMOS-memristor integration approaches
that include in-built calibration procedures that
could cancel out device-level discrepancies. Also,
connecting to the works on biologically plausible
on-chip learning methods Biodifferentially Brine

Trust,e.g., eSpike-Timing Dependent Plasticity
(eSTDP), surrogate gradient descent, or
reinforcement learning could enhance the

flexibility and trainability of SNNs. Last but not
least, testing of the proposed architectures against
real-time, event-driven data (e.g., DVS Gesture or
N-Caltech101) on dynamic neuromorphic vision
sensors (DVS) would ensure a more concrete
extrapolation into the feasibility of their practical
application in edge devices.

6. Future Directions

Although the current review has established
feasibility of CMOS and memristor-based
neuromorphic solutions at the low-power edge Al
domain, further advancement in the area can build
on that basis in a number of meaningful ways.
Among these opportunities is how to integrate on-
chip learning mechanisms, enabling real-time
adaptation, and continuouslearning without the
need to rely upon further retraining by using on-

chip learning mechanisms, whether adaptive
spike-timing-dependent plasticity (STDP),
reinforcement-based learning or surrogate

gradient methods. Still another direction is the 3D
stacking of neuromorphic cores which have the

potential to much improve parallelism, and reduce
interconnect delays and energy efficiency in
particular when used in high-density memristive
(network) arrays. Furthermore, by deploying these
architectures into the biomedical wearables,
prosthetic systems, and the edge robotics, it is
possible to open up new real-life applications
where ultra-low power, low-latency smarts matter
immensely. Last of all, the hybrid digital-
neuromorphic co-processors where deterministic
control is actioned in digital logic and the cognitive
functions occur on neuromorphic modules will
provide an adaptable task-specialized processing
ecosystem to future embedded intelligent systems.

7. CONCLUSION

In this research project, the researcher focused on
developing and testing the CMOS and memristor-
based neuromorphic computing architectures that
would support energy-efficient artificial
intelligence (AI) on the edge. Using both a circuit-
level model and a multi-area system-level model of
a spiking neural network, we showed that

neuromorphic  hardware could dramatically
decrease energy, latency, and even maintain
accuracy similar to traditional digital CNN

architecture, with just a few trade-offs. We
managed to  demonstrate  through  our
experimental analysis that a memristor based
solution has the lowest energy consumption and
the least silicon in terms of area thus making it a
very attractive solution in compact, ultra-low-
power systems. In the meantime, the CMOS based
architecture offered strong performance together
with the ability to fit in with grown fabricators. The
two methods confirm the viability of
neuromorphic systems in supplying real time,
embedded Al systems involving IoT devices,
autonomous sensors and wearables.

The importance of these results is in the increasing
importance of brain-inspired hardware in the post-
Moore world of computing. Neuromorphic systems
will become a staple technology of the next
generation of intelligent electronics as its training
algorithm obstacles, integration with hardware,
and inter-device inconsistencies get solved. Future
directions will be on chip learning, real-time
adaptation, and varying scaling to a real-life
scenario.
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