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 Neuromorphic computing is a radically new way of doing artificial 
intelligence inspired by the structure and functioning of biological 
neural networks to deliver ultra-low power, event-driven, and massively 
parallel computation. The sensitivity of these systems to faults 
propagated by process variation, aging, soft errors, and environmental 
perturbation becomes a critical issue as they switch over to 
nanoelectronic hardware implementations (using CMOS, memristors, 
and phase-change memory and emergent technologies). The interplay 
between neuromorphic design and nanoscale electronics now requires 
the development of new approaches to reliability, robustness, and fault 
tolerance throughout the system stack. The current review provides a 
carefully-structured review and analysis of approaches to fault-tolerant 
design of neuromorphic nanoelectronic systems. Key fault sources are 
classified and examined, focusing on transient faults, permanent defects 
and device-level stochastic behaviours, and determining their effect on 
spiking neural network (SNN) performance, their learning behaviour 
and robustness of their respective systems. The choices discussed in the 
review, include hardware- and algorithm-level solutions, such as 
redundancy mechanisms, approximate computing models, adaptive 
routing, and self-healing circuits. Particular importance is given to bio-
inspired fault resilience mechanisms, e.g. synaptic plasticity and 
structural reconfiguration, that allow systems to continue to function 
despite degradation. 
We identify some of the recent benchmark implementations, such as 
Intel Loihi, IBM TrueNorth, DYNAPs, and newer memristive SNN 
frameworks, on which we speculate about architectural agentic 
resilience characteristics and design considerations. By means of a 
comparative analysis, we explain the effectiveness of varying fault 
mitigation methods and suggest a taxonomy of assessing system-level 
reliability in neuromorphic architecture. Lastly, we glean on research 
challenges that are still open such as scalability under variability, online 
fault detection, cross layer co-design, and standardisation of fault 
tolerance metrics. The acquired experience in this review will form the 
basis of future advances in the realization of energy-innovative, reliable, 
and brain-like nanoelectronics computing systems in edge AI, robotics, 
and cognitive application in a new generation. 
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1. INTRODUCTION 
During the last several decades, traditional von 
Neumann computers have been failing to cope with 
increasing demands placed on them by data-
intensive and intelligent tasks. Such shortcomings, 
especially in energy efficiency and parallel 
processing, are factors that have led to the quest of 
exploring the alternative computing paradigm 
based on the human brain. The neuromorphic 
computing has appeared as a very promising 
solution, which is defined by features of event 
driven computing, massively parallel processing, 
and the physical localization of memory and 

processing systems, properties akin to the basic 
functionality of the biological neural systems [1]. 
Neuromorphic computing history dates back to 
late 1980s work of a pioneer in the field, Carver 
Mead, who had a vision of silicon-based circuits 
inspired by the neurobiological architecture [2]. 
Neuromorphic design has passed through several 
phases ever since then beginning with software-
based simulations to extremely dedicated 
hardware designs. The latest developments of 
spiking neural networks (SNNs), using discrete, 
asynchronous spikes to process information in a 
fashion more analogous to that of biological 
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neurons, have led to the ability of neuromorphic 
systems to compute at ultra-low power 
consumption levels, yet responsively in real-
time.[3] 
Researchers have become more interested in using 
nanoelectronic technologies to realize these 
systems in the hardware domain including CMOS 
scaling, resistive random-access memory (RRAM), 
memristors and phase-change memory (PCM). 
These devices have led to high density integration 
and the in-memory computing properties which 
suit well in a neuromorphic system. Nonetheless, 
they have multiple reliability issues associated 
with their utilization. Circuit behavior in the 
nanoscales is much more susceptible to process 
variations, soft errors and aging, and thermal 
noise, which all can result in reduced performance 
or systems failures [4][5]. 
The brain on the other hand has amazing fault 
tolerance, its abilities have adapted reliably even 
when surrounded by the immense parallelism, 
variability, and event neuron death. Spurred by this 
resilience, neuromorphic systems require to 
combine fault-tolerant design solutions that enable 
graceful degradation, error resilience and self-
healing properties [6]. In particular safety-critical 
areas such as autonomous vehicles, edge artificial 
intelligence, biomedical implants, and aerospace 
platforms, this mechanism is a necessity since the 
absence of guarantees can be disastrous. 
The urgency to review this area of fault-tolerant 
strategies within the neuromorphic nanoelectronic 
systems is driven by the will to amalgamate the 
state of art of this field, and also review critically. 
We start with the classification of the fault and 
reliability threats that are specific to the realm of 
nanoscale neuromorphic hardware. After that we 
look at design techniques that can improve 
robustness, to the hardware and software levels, 
error-resistant network structure, self-adapting 
circuits, as well as bio-inspired reconfiguration. We 
provide the comparative studies of such state-of-
the-art platforms as Intel Loihi, IBM TrueNorth, 
DYNAPs, and memristive crossbar arrays in terms 
of their architecture to fault mitigation strategies 
[7][8]. 
This review has four-fold contributions. To begin 
with, it provides a complete taxonomy of fault 
causes in the neuromorphic nanoelectronic 
systems, which includes process variation, soft 
errors, device aging and thermal instability. 
Second, it gives an elaborate taxonomy of the fault-
tolerant design methods used at the circuit, 
system, and algorithmic levels, such as redundancy, 
self-healing circuits, and resilient learning 
algorithms. Third, it offers comparative knowledge 
regarding benchmark neuromorphic platforms, 
including Intel Loihi, IBM TrueNorth, or the 
memristor-based systems, and the related 

strategies of fault mitigation and related trade-offs. 
Fourth, the review reveals critical open research 
problems and future directions that should be 
undertaken to improve the soundness and 
largeness of brain inspired computing systems. 
This book intends to be a reference to the 
researchers and engineers in the field of designing 
reliable energy-efficient and flexible neuromorphic 
system in the age of nanoelectronics, as it 
synthesizes the improvements made in materials 
science, device engineering, circuit design and 
integration of circuits at the system level. 
 
2. Fundamentals of Neuromorphic Computing 
Neuromorphic computing- a field concerned with 
the design of hardware and computational models 
to mimic architecture and dynamics of the human 
brain. Neuromorphic systems differ in that they 
work on principles of distributed, event-based 
information processing whose memory and 
computation do not run in different locations as in 
the traditional von Neumann architectures. 
Initially, these systems are motivated by the 
efficiencies, parallelism and fault tolerance of 
biological neural networks. 
 
2.1 Brain-Inspired Computing Principles 
The very essence of neuromorphic computing is 
Spiking Neural Network (SNN) a 3 rd generation 
model of neural networks that manipulates and 
conveys information as discrete electrical events, 
or spikes, similar to action potentials in biological 
neurons. SNNs compute with spike timing, 
crunching information which is encoded with time 
unlike with the artificial neural network (ANNs) 
whose activations are continuous. 
Spike-Timing-Dependent Plasticity (STDP) is one 
of the most important learning rules in 
neuromorphic systems and it is a Hebbian style of 
learning seen in nature. STDP increases or 
decreases synapses depending on whether the 
spikes between a pre- and post-synaptic neuron 
are more likely to coincide. In this case synapses 
increase or decrease in strength. It is a biologically 
plausible rule, which facilitates unsupervised 
learning, and adaptability among hardware 
systems. 
Also, another critical characteristic that enables 
the synaptic connections to vary in strength with 
time is the synaptic plasticity, which enables 
learning, memory, and resilience in a 
neuromorphic model. Long-term potentiation 
(LTP) and depression (LTD) are examples of 
mechanisms such as plasticity whose role is 
essential to the continued learning and self-
structuring in SNNs implemented in hardware. 
 
2.2 Neuromorphic System Hierarchy 
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Neuromorphic systems are generally grouped into 
a hierarchical structure reflecting the hierarchical 
structure of biological neural networks, which 
include circuits of neurons, synapse circuits and 
interconnects. The main processing units are 
neuron circuits which are modelled after biological 
neurons and which integrate values of incoming 

spikes, do non-linear thresholding, and produce 
outgoing spikes. These circuits may be as simple as 
leaky integrate-and-fire (LIF) circuits, or as 
biologically realistic as HodgkinHuxley models 
(and everything in between). Connection weights 
are also stored in synapse circuits and can adjust 
the force of the spike passage amid neurons.  

 

 
Figure 1. Neuromorphic System Hierarchy 

 
Hierarchical architecture of neuromorphic 
systems, highlighting core processing units, 
memory-synapse interactions, and communication 
pathways Synapses in hardware are typically 
implemented with resistive memory devices which 
can be memristors or arrays of digital memory 
devices; those adaptive mechanisms will often 
integrate a more easily integrated learning 
mechanism (such as spike-timing-dependent 
plasticity (STDP)) into the resistive memory 
device. Transport of spikes amongst the neurons 
and synapses takes place through interconnects 
and communication fabric. Typically, in large scales 
neuromorphic systems communications are 
facilitated using asynchronous event driven 
routing protocols such as Address-Event 
Representation (AER) in order to provide low 
latency and scalable spike based data transfer. This 
hierarchical design makes it modular, and 
biologically realistic, facilitating real-time 
inferencing, fault-tolerant, and low-energy 
inference, especially in real-time sensory 
perception, motor planing, and complex decision-
making algorithms. 
 
2.3 Hardware Platforms 
Multiple hardware platforms are being designed to 
realize neuromorphic principles with more 
advanced nanoelectronic technologies, with varied 
advantages and trade-offs. CMOS systems CMOS-
based systems have been popular in implementing 

large neuromorphic chips like IBM TrueNorth and 
Intel Loihi that have millions of artificial neurons 
and synapses. These are platforms that apply low 
power consumption and high computational 
efficiency using digital event-driven circuits and 
asynchronous communication. Contrastingly, 
memristor-based systems deploy two-terminal 
resistive switching devices which simulate synaptic 
characteristics given that they are non volatile, 
have analog states of conductance and that they 
can be highly scaled. In-memory computing In-
memory computing is especially adapted to 
memristive crossbar arrays, where the synaptic 
weight arrays and the plasticity can be 
implemented as energy-efficient and compact 
architectures. Also, the emerging spintronic and 
related technologies including magnetic tunnel 
junction (MTJs) and domain wall memory (DWM) 
have also been proposed as the possible 
neuromorphic implementations since their 
switching speed is fast, they are non-volatile and 
can resist high radiation levels and increase in 
temperatures, which makes them valuable in 
extreme settings. Although the combination of 
these two platforms may be attractive in terms of 
performance, energy efficiency and fault resilience, 
its integration with the neuromorphic systems will 
require co-design of the device features, circuit as 
well as learning features. The holistic perspective 
forms the basis of evaluating how such systems 
cope with hardware-level faults, an aspect which is 
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the subject of focus in following sections of this 
review. 
 
4. Sources of Faults in Nanoelectronic Systems 
Since the neuromorphic systems move on the 
nanoscale side, they are more immature to the 
broad range of hardware faults. These errors exist 

because of physical, environment, and circuit 
manufacturing-associated issues that may 
considerably impair performance and precision as 
well as reliability of neuromorphic circuits. This 
part specifies the key groups of fault sources of 
nanoelectronic systems used in neuromorphic 
computing. 

 

 
Figure 2. Taxonomy of Faults in Nanoelectronic Neuromorphic Systems 

 
Classification of common fault sources in 
neuromorphic nanoelectronic systems based on 
origin and impact. 
 
4.1 Process Variations (PVT Variations) 
Process variations Process variations Process 
variations are intrinsic characteristic of 
semiconductor manufacture, and describe the 
accidental variations in device parameter of 
channel length, oxide thickness, threshold voltage, 
and doping concentration. Such differences may be 
categorized as die-to-die (inter-die) and within-die 
(intra-die). Because of the high sensitivity to 
transistor characteristics, in neuromorphic circuits, 
particularly those based on subthreshold analog 
computation or compactor CMOS, a small shift in 
transistor characteristics could cause a large 
difference in neuron firing thresholds, the accuracy 
or synaptic weight values, or current mirror 
performance. In addition, PVT variations ( Process, 
Voltage, Temperature ) influence the 
characteristics of circuits in realistic operating 
environments. These inaccuracies may lead to 
timing errors, logic errors or other erratic power 
consumption behaviors and this is a significant 
bottleneck in the calibration of a system and fault 
tolerance. 
 
4.2 Soft Errors and Radiation Effects 
Non-destructive bit flips, which are sometimes 
referred to as soft errors or transient faults, 

happen when a high-energy particle hits the 
device, when electromagnetic interference 
appears, or in response to exposure to alpha 
particles that were released by within the 
packaging material. These faults neither lead to the 
permanent damage of the hardware but may 
corrupt data temporarily recorded in flip-flops, 
latches, or memory cells. The sensitivity of 
neuromorphic systems and systems, especially 
those implemented in deep submicron nodes, to 
these effects is on the rise because of smaller 
critical charge and smaller node capacitance. Soft 
errors in SNN architectures may occur in the form 
of false spikes, damaged synaptic weights, or 
erroneous neurons firing, and the damage can 
affect real-time operation/learning dynamics. Also 
radiation hardened designs will be needed to 
deploy neuromorphic systems in aerospace, 
defence or high altitude environments where 
exposure to cosmic radiation is high. 
 
4.3 Aging, Wear-Out, and Thermal Issues 
In its use, the nanoelectronic devices wear out with 
physical wear-out processes, which include Bias 
TemperatureInstability (BTI), Hot Carrier Injection 
(HCI), and Electromigration (EM). These age 
phenomena cause progressive changes in 
threshold voltage and declines in drive currents 
and final transistor or interconnect failure. Long-
term neuron drift, synapse effects, or weakened 
communication might be a problem with aging in a 
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neuromorphic circuit. What is more, very high 
switching rates in a Dense crossbar array, or event-
driven cores, can cause local 'thermal hotspots', 
where low local cooling further accelerates ageing 
and failure of switching devices. The thermal 
management and balance of workload therefore 
plays an important role in lengthening the system 
life, and sustaining the performance of the system 
working under long-term operation. 
 
4.4 Variability in Emerging Devices 
(Memristors, RRAM, PCM) 
Although emerging non-volatile memory 
technologies: memristors, Resistive RAM (RRAM), 
and Phase-Change Memory (PCM) are of great 
interest to neuromorphic synapse implementation, 

these technologies have very large variability at the 
device level. Larger issues are cycle-to-cycle 
fluctuations, device-to-device non-homogeneity, 
programming non-linearity, and endurance 
restrictions. As an example, memristors can exhibit 
a wide range of resistance during the same 
programming, compromising the accurateness of 
stored synaptic weights. The PCM devices also tend 
to the phenomenon of resistance drifts over time 
because of the atomic rearrangement. Such 
differences will lead to sub-optimized learning 
dynamics, noise build-up and instability in analog 
computation, necessitating fault-conscious 
mapping policies, calibration networks and error-
tolerant learning rules to be performed reliably in 
neuromorphic computing. 

 
Table 1. Summary of Fault Sources, Causes, and Their Impact on Neuromorphic Systems 

Fault Type Primary Causes Impact on Neuromorphic 
Systems 

Process Variations 
(PVT) 

Manufacturing inconsistencies, 
voltage/temp fluctuations 

Neuron/synapse threshold 
deviation, timing failures 

Soft Errors & 
Radiation 

Cosmic rays, alpha particles, 
electromagnetic interference 

Bit flips in memory/spikes, 
misfiring neurons 

Aging & Thermal 
Issues 

Bias temperature instability, hot 
carrier injection, electromigration 

Degraded synapse function, 
neuron drift, circuit failure 

Variability in 
Emerging Devices 

Programming variability, 
resistance drift, non-uniformity 

Imprecise weight storage, 
analog noise, learning 
instability 

 
5. Fault Tolerance Techniques in Neuromorphic 
Systems 
Since neuromorphic systems trend to nanometer-
scale dimension and hybridize the emerging 
devices, i.e., memristors and spintronics, the 
vulnerability to hardware faults becomes 
prominent. The introduction of fault tolerant 
design techniques is required to ensure the 
existence of a strong and secure operation in terms 
of such limitations. Fault resilience in a 
neuromorphic architecture is possible in a way 

that it is not with traditional computing systems, in 
that such architectures are distributed, event 
oriented, and biologically inspired. This section 
examines a variety of methods of fault tolerance 
designed to be applied to neuromorphic hardware, 
praying on redundancy, circuit level tolerant to 
error, adaption and reconfiguration and specific 
methods in memristive technology. All these 
methods serve the purpose of improving system 
reliability, preserving computational accuracy, and 
self-recovery over faults. 

 

 
Figure 3. Fault-Tolerance Strategy Taxonomy 
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5.1 Redundancy-Based Techniques 
Redundancy is a time-tested and an efficient 
paradigm of fault tolerance in classic and 
neuromorphic hardware structures. Triple 
Modular Redundancy (TMR) may be one of the 
best known approaches in which three identical 
circuits or neurons are run in parallel, and a 
majority voting scheme used to determine the 
correct answer. The method is especially applicable 
in applications of high reliability such as those 
involving missions. Spatial redundancy Spatial 
redundancy in neuromorphic systems typically 
entails a prescription and/or duplication of 
neurons or synapses in more than one area of a 
chip. Temporal redundancy In temporal 
redundancy, computations are repeated over time, 
in order to check that they are consistent. Also, 
fault coverage may be administered in fine-grained 
redundancy where the units which are under 
protection are single neuron or synapse parts, and 
in coarse-grained redundancy where functional 
blocks or cores are protected. The approaches 
guarantee grace degradation and make it possible 
to operate even after partial failures within the 
system have occurred. 
 
5.2 Error-Resilient Circuit Design 
A second measure against faults is construction of 
fault-tolerant circuits that can absorb error and 
still provide satisfactory fault-tolerant 
performance. Neuromorphic systems As of early 
2017, approximate computing is a key aspect of 
neuromorphic systems because brain-inspired 
models tolerate small errors. This makes it 
possible to be lax when it comes to precision in 
calculations and as a result, it uses less power and 
becomes more fault tolerant. Besides, in the spirit 
of graceful degradation, systems can still cope with 
degraded functionality instead of failing. Some 
techniques exist that the system can test itself 
during idle time, or time when it is starting up, 
telling which components are defective in real 
time, e.g. Built-In Self-Test (BIST). In addition, 
Error Detection and Correction (EDC) schemes are 
inbuilt to automatically detect and correct 
transient or faults, especially in the memory array 
and the interconnect paths. All these measures 
increase the reliability of the neuromorphic 
processors, particularly energy-limited and 
dynamically-variant environments. 
 
5.3 Adaptive and Reconfigurable Architectures 
Adaptive and reconfigurable architectures of 
neuromorphic systems enhance system robustness 
by either altering system behavior/structure when 
in a fault state. Dynamic rerouting principles allow 
the system to circumvent bad neurones, synapses 
or interconnects by rerouting the spikes along 
healthy pathways. The same way fault-aware 

routing algorithms are anticipative and re-schemes 
the areas of high fault density to balance load and 
cover the functional domain. In addition, 
neuroplastic hardware architectures, borrowing 
the concept of self-healing under conditions of 
brain defect, can evolve structurally, over time, by 
reallocating available resources or retraining 
synapses among regions of defect. Such plasticity-
based models enable autonomous recovery of 
systems, which in turn brings in long-range 
resilience and adaptability, especially in those 
environments where the conditions of operations 
are unpredictable, or otherwise detrimental. 
 
5.4 Memristor-Specific Techniques 
Although memristors and other resistive devices 
are very promising in regards to neuromorphic 
computing, device-unique non-idealities require 
special fault tolerance mechanisms. Variability 
compensation of programming covers program 
inconsistency that is produced due to the disparity 
of the levels of resistance involved despite using 
the same programming pulse. Such non-
determinism is mitigated by calibration 
algorithms, iterative tuning or probabilistic 
encoding schemes. Also in order to avert lost of the 
devices by the few number of write cycles, 
endurance-aware wear-leveling is used to ensure 
that the programming operations are dispersed on 
the array. This guarantees long durability and 
consistency of synaptic matrix. Line resistance, 
sneak path and stuck-at faults can have severe 
detri- mental impact on signal integrity and 
computation accuracy within memristive crossbar 
array applications. To deal with this, fault-aware 
mapping, error correction codes and selective row 
intervention and column isolation techniques are 
combined to enable functionality and 
computational effectiveness. These customizations 
play an important role in development of powerful 
and scalable neuromorphic systems using new 
types of non-volatile memories. 
 
6. Case Studies and Benchmark Architectures 
In order to approach the practical application in 
fault-tolerant neuromorphic systems in a more 
comprehensive way, the current section considers 
the number of commercially available hardware 
platforms, significant in terms of both variety of 
approaches towards the architectural background, 
technological choices, and reliability goals. These 
architectures illustrate the manner in which fault 
tolerance is actually baked into real-world 
neuromorphic designs, which differ in terms of 
both performance-optimisation targets and 
application contexts. 
IBM TrueNorth is an early digital neuromorphic 
chip that was produced on the 28 nm CMOS 
technology. It has a non-von Neumann architecture 
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constituting 4,096 neurosynaptic cores with 256 
programmable neurons and 256 x 256 synapses. 
The core-level redundancy is the main method 
used to realize fault tolerance is TrueNorth, since 
inactive or destroyed cores may be bypassed, 
without causing the whole network to malfunction. 
Its event-driven spiking architecture is similar to 
the biological counterparts and allows it to use a 
very low amount of power hence its application is 
good in embedded systems and edges of AI. 
Asynchronous, in contrast, TrueNorth has a certain 
robustness and is very efficient, regardless of the 
digital nature. 
Intel Loihi portrays a more mature neuromorphic 
platform, depending upon digital CMOS, and 
focuses on learning and adaptability. Designed 
with 14nm process technology Loihi supports 
more than 130,000 neurons and 130 million 
synapses and 128 cores. The basis of its fault 
tolerance capability is its on-chip error-monitoring 
mechanism, according to which the chip is able to 
identify and deal with transient errors run-time. 
Loihi implements on-chip learning, such as spike, 
plasticity rule weights and reinforcement learning 
which allows an autonomy to deal with dynamic 
environments. The architecture also offers runtime 
diagnostics and debugging facility and hence 
becomes robust during development and 
deployment conditions. 
The Institute of Neuroinformatics has created 
DYNAPs (Dynamic Neuromorphic Asynchronous 
Processors) an analog-digital hybrid system 
tailored to real-time senses processing. It uses the 
digital communications protocol with analog nerve 
cells and synapses. Fault tolerance In DYNAPs, 
adaptive mapping strategies are used whereby 
neurons and synapses can be re-allocated in a 

dynamic manner in case of functional degradation 
or failure. This mechanism which is based on 
plasticity will allow continued operation in the face 
of partial hardware failure. DYNAPs is streamlined 
towards real time bio-interfacing, including use in 
robotic control and neuro-prosthetics where real 
time responsiveness and adaptivity are paramount. 
Memristive Spiking Neural Networks ( SNNs ) are a 
type of neuromorphic system based on new 
resistive memory devices like Resistive RAM 
(RRAM) or Phase-Change Memory (PCM) where 
the emulated synaptic behavior is achieved 
through a memristive device. They provide the 
dense integration to an ultradense level and allow 
the analog in-memory computing that minimizes 
latency and energy consumption due to the limited 
data movement. The said systems, however, are 
subject to building blocks imperfections, because 
of indefensible and endurance challenges of 
memristors, and, that is why, they demand defect 
sensitive strategies in mapping. It involves 
determining malfunctioning equipment and 
routinely redirecting the connections or altering 
programming patterns in order to correct the 
inaccuracies. Fault-aware architectures would 
prove necessary to achieve the advantages of 
memristive technology but without compromising 
accuracy and stability of computation. 
All of those platforms are unique combinations of 
architectural advancement, incorporation of 
technology, and fault-tolerance approach. They 
offer together useful information to the design 
trade-offs and best practices that can allow their 
development of resilient, capable-of-scale 
neuromorphic systems that may serve reliably in 
the real world. 

 
Table 2. Comparative Summary of Benchmark Neuromorphic Platforms 

Platform Technolo
gy 

Fault 
Tolerance 
Method 

Key Feature Scalabili
ty 

Fault 
Toleran
ce 

Power 
Efficien
cy 

Adaptabili
ty 

IBM 
TrueNort
h 

Digital 
CMOS 

Redundant 
cores 

Event-driven 
spiking 

4 4 5 3 

Intel 
Loihi 

Digital 
CMOS 

Error-
monitoring 
system 

Learning-
enabled 
architecture 

5 5 4 5 

DYNAPs Analog-
Digital 

Adaptive 
mapping 

Real-time bio-
interfacing 

3 3 4 5 

Memristi
ve SNNs 

RRAM / 
PCM 

Defect-
aware 
mapping 

Analog in-
memory 
computing 

5 4 5 4 
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Figure 4. Radar Chart Comparison of Neuromorphic Platforms 

 
The radar chart illustrates a normalized 
comparison across four critical design metrics—
scalability, fault tolerance, power efficiency, and 

adaptability—for IBM TrueNorth, Intel Loihi, 
DYNAPs, and Memristive SNNs. 

 

 
Figure 5. Bar Chart of Metric Scores Across Neuromorphic Systems 

 
This bar chart visually contrasts the metric scores 
for each platform, highlighting strengths and trade-
offs among different neuromorphic architectures 
based on current benchmarking criteria. 
 
7. Challenges and Open Research Issues 
1. Scalability vs. Fault Tolerance Trade-Offs 
Fault tolerance is harder to sustain, at low 
overhead, as neuromorphic systems scale up to 
millions of neurons and synapses. It may be at 
variance with area, power, and interconnect 

complexity constraints to add redundancy or 
reconfigurability to support reliability. An 
important challenge in the design is how to 
balance compact, energy-efficient design and 
robustness. 
 
2. Real-Time Fault Detection in Event-Driven 
Systems 
Neuromorphic platforms are built on the 
asynchronous, spike-based communication. This is 
event-driven so the conventional fault detection 
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systems (e.g., clock-based checking, scans that 
occur periodically) are less effective. The need to 
create low-latency in-situ fault detection methods 
that perform without interruption of the real-time 
processing is an urgent task. 
 
3. Integration of AI/ML for Predictive Fault 
Handling 
Neuromorphic systems mimic brain intelligence, 
but they are not yet endowed with built-in 
intelligence to sense themselves and predict 
upkeep. Even proactive fault prevention might be 
possible through embedding lightweight AI/ML 
models to predict device failures, performance 
drift or synaptic degradation, but this must be co-
designed to minimise energy and computational 
costs. 
 
4. Benchmarking Fault Resilience in 
Neuromorphic Workloads 
No standardized benchmarks and metrics have yet 
been developed to measure fault resilience of 
neuromorphic platforms using realistic workloads 
(e.g. sensory processing, robotic control). We have 
to develop simulation tools, test protocols, and 
resilience scoring system to compare platforms 
and direct the platform design optimization in 
future. 
 
8. Future Directions  
1. Co-Design of Algorithms and Fault-Tolerant 
Hardware 
In future, there will be a need to have a close 
integration of learning algorithms and hardware 
design in the case of neuromorphic systems. This 
would be to design SNN models and training rules 
(ex: STDP, reinforcement learning) for which their 
behaviour is fundamentally resistant to hardware 
noise, variability, and partial failures, as well as to 
create hardware that can efficiently support said 
error-resistant learning algorithms.Hardware-
aware neural algorithms and algorithm-aware 
accelerators, enabling hardware-resilient learning. 

2. Brain-Inspired Self-Repair and Plasticity 
Mechanisms 
Like biological systems, future neuromorphic 
domains currently have self-repairing and 
plasticity-based reconfigurable services that are 
likely to be integrated. Such systems will be able to 
autonomously recover against hardware 
degradation due to the re-routing, re-weighting, or 
re-mapping of neurons and synapses in real-
time.Embedded versions of long-term learning, 
self-healing, and adaptive compensation of 
hardware failures, which are particularly 
important to edge and autonomous systems. 
 
3. Integration with 3D Neuromorphic ICs and 
Edge AI 
Future Neuromorphic processors will be 
implemented with a 3D integration technology to 
support greater connectivity, density, and bio-
plausibility. Vertically stacking memory and 
compute layers eliminates interconnect delay, and 
lowers power. Such 3D architectures will play an 
important role in real-time, on-device AI systems 
in contexts including robotics, intelligent sensors, 
and biomedical implants.3D chips made of dense 
(highly dense) and efficient (low energy) 
neuromorphic computational systems, matched 
with sensors on edge AI platforms (e.g., wearables, 
drones, and neural interfaces). 
 
4. Standardized Evaluation Frameworks for 
Fault Resilience 
At the moment, there exists no common metric (of 
faults) on which the fault resilience of 
neuromorphic systems can be measured and 
compared. There will be a need to have 
standardized testing frameworks, models of 
simulation and resilience assessment methods or 
metrics to compare architectures on different 
platforms, devices and application environments. 
Development of open-source tools, fault injection 
platforms and neuromorphic-specific testbeds to 
stimulate industry and academic interaction on 
how to design robust systems. 

 
Table 3. Strategic Forecast of Future Directions in Fault-Tolerant Neuromorphic Computing 

Future Direction Key Focus Area Impact 
Co-Design of Algorithm & 
Hardware 

Error-tolerant learning 
models + robust circuits 

Resilient learning on 
unreliable hardware 

Brain-Inspired Self-Repair Adaptive synaptic 
remapping, re-routing 

Increased system longevity 
and adaptability 

3D Neuromorphic 
Integration 

Vertical stacking of 
compute and memory 
layers 

Compact, scalable, and edge-
ready architectures 

Standardized Resilience 
Benchmarks 

Tools for measuring and 
comparing fault 
tolerance 

Objective platform 
evaluation and 
improvements 
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9. CONCLUSION 
The concept of Neuromorphic computing is the 
paradigm shift of artificial intelligence and 
embedded system design, presenting the 
alternative to traditional architectures encoding 
ideas on the event-driven, parallel, and energy-
efficiency of computation that it suggests being 
shaped by biological intelligence. But as 
neuromorphic systems are increasingly made 
concrete in terms of being implemented using 
state-of-the-art nanoelectronic devices, including 
CMOS devices, memristive devices, and spintronic 
devices, they become more susceptible to a large 
number of faults including process variability, soft 
errors, aging effects, and novel non-idealities. The 
paper has given a detailed overview of 
neuromorphic hardware fault sources, and 
categorized the existing state-of-the-art solutions 
that guarantee robustness in the system, along the 
lines of redundancy-based techniques, error-
tolerant circuit design, adaptive and reconfigurable 
architectures, and memristor-oriented fault 
resilient schemes. 
We identified real-world example of these fault-
tolerant principles (like in benchmark approaches 
like IBM TrueNorth, Intel Loihi, DYNAPs, and 
memristive SNNs) and discussed trade-offs in 
terms of scalability, power efficiency, and 
resilience. The paper has also listed vital 
challenges the study has encountered, which 
include scalability-reliability trade-off, real and 
reactive detection in asynchronous systems, and 
lack of standardized fault resistance benchmarks, 
as well as predicted trends that are likely to get 
advanced in three areas of algorithm hardware co-
design, brain-inspired self-repair, 3D integration, 
and evaluation frameworks. 
Finally, the combination of biological fault 
tolerance concepts, with nanoelectronic reliability 
engineering will also plays a significant role in 
developing the next generation intelligent, 
adaptive and robust neuromorphic systems. 
Applications that are likely to run on these systems 
include autonomous edge AI, wearable healthcare, 
aerospace, and cognitive robotics, all of which 

cannot afford to have fault tolerance as a luxury, 
but rather a requirement. 
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