
    1 Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

Electronics, Communications, and Computing Summit                                   
Vol. 2, No. 3, Jul - Sep 2024, pp. 1-8 

DOI: https://doi.org/10.17051/ECC/02.03.01                                                                                                                                                                                               

  

 

 
 

Cloud-Native Microservices Architecture for Scalable and 
Next-Generation Computing Applications 

 

Falayi Olukayode1, F. Mohd Zaki2 
 

1Tai Solarin University of Education, Nigeria, Email: Olukayodefalayi@Yahoo.Com 
2Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 

Malaysia 
 

Article Info 
 

ABSTRACT  

Article history: 

Received : 10.07.2024 
Revised    : 12.08.2024 
Accepted  : 14.09.2024 

 

 The mature development of next-generation computing paradigms 
(such as edge computing, artificial intelligence (AI)-based services and 
distributed analytics), has necessitated the need to adopt a paradigm 
shift to architectures that are more scalable, fault-tolerant and modular. 
The requirements of dynamic workloads, real-time data processing and 
elastic resource management are becoming insufficient in common 
monolithic architectures. And in that regard, cloud-native microservices 
have become one of the most influential architectural methods that 
break up the application into loosely connected, independently 
deployable services. This paper provides an in-depth study of the 
principles of the design, and enabling technologies, and deployment 
approaches of the cloud-native microservices customized to the next 
generation computing environment. The focus will be on more 
fundamental building blocks like containerization (e.g. Docker), 
orchestration architecture (e.g. Kubernetes), service mesh (e.g. Istio) 
and continuous integration / continuous deployment (CI/CD) pipelines. 
To have empirical assessment of the proposed architecture, a simulated 
e-health analytics pipeline was put in place to compare the key 
performance indicators in the proposed architecture with performance 
of a baseline monolithic model in terms of response time, deployment 
latency, fault recovery and scalability index. These findings reveal that 
the microservices architecture-based system is highly effective in 
boosting deployment agility, and the capability to survive full-
concurrency and scale up by over 150%. In addition, the paper critically 
evaluates the operational complexity such as trade-offs between the 
granularities of services, inter-service communication overheads, 
bottlenecks of observability and challenges of consistency in distributed 
state management. These limitations are suggested to be tackled with 
best practices in domain-driven service boundaries, distributed tracing, 
and API gateway patterns. Concluding the study, one can outline future 
research directions in such domains as AI-based autoscaling, edge-
based federation of microservices; serverless integration, and security 
of microservice-based systems. On the whole, this work offers an 
authenticated reference model and sensible approaches to the 
researchers and practitioners to use cloud-native microservices as the 
support of scalable, intelligent, and resilient applications of their 
computing in the age of digital transformation. 
 

 

Keywords: 

Scalability,  
Kubernetes orchestration,  
Containerization,  
Edge computing,  
Service mesh,  
DevOps pipelines,  
Real-time analytics,  
Distributed systems,  
Fault tolerance,  
Resilient application design,  
AI workloads in microservices,  
Elastic deployment. 
 

 
1. INTRODUCTION 
The introduction of the next generation of 
computing paradigms, including edge computing, 
artificial intelligence (AI) -enabled services, real-
time analytics, and hybrid clouds deployment has 
had a major impact on the architectural demands 
on modern software systems. These paradigms 
also require scalable (as well as resilient and agile) 
designs of infrastructure and application to enable 
continuous integration, deployment, and evolution. 

Although monolithic systems work well in 
reasonably stable and homogeneous 
environments, they have fatal weaknesses such as 
high coupling between components, inability to 
scale a single service and do not rely on fast 
deployments. Such constraints are worse off in 
dynamic and distributed computing where low 
latency and real-time responsiveness and resource 
elasticity are not an option. 

 

mailto:Olukayodefalayi@Yahoo.Com


2                                       Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

 

Falayi Olukayode et al / Cloud-Native Microservices Architecture for Scalable and Next-Generation 
Computing Applications 

  

 
 

 
Figure 1. Cloud-Native Microservices Architecture for Next-Gen Computing 

 
Cloud-native microservices architecture has 
appeared as a sustainable course of action to 
overcome these problems. In contrast to 
monolithic systems, microservices partition an 
application into small, independently releasable, 
loosely coupled services, which each implements 
one capability of the business. This modular 
architecture allows horizontal scalability, better 
fault isolation, test ability and enables parallel 
development by distributed teams. When used on 
cloud-native hosting platforms like Kubernetes, 
these services may be deployed, upscaled and 
tracked with industry-standard management tools, 
supporting declarative configuration, automatic 
recovery and elastic group to workload. 
The current paper proposes research on cloud-
native microservices that can support new 
generation computing applications. It focuses on 
the combination of containerization (e.g., Docker), 
orchestration systems (e.g., Kubernetes), service 
meshes (e.g., Istio) and continuous integration / 
continuous delivery systems in order to enable 
perpetual innovation and instant responsiveness. 
What is more, the research analysis tests the 
architectural advantages and the operation rate of 
the microservice in a simulated instance of smart 
healthcare and compares that with a traditional 
monolithic implementation in the same 
environment with similar calculations loads. 
The remaining paper is organized as follows: In 
Section 2, the literature review is explained. In 
Section 3 the proposed architecture and 
implementation strategy are discussed. The 
section 4 explains the experimental design and 
procedures. In section 5 the results are analyzed. 
Section 6 describes limitations and difficulties, and 
7 describes the direction of future researchers. 

Section 8 comprises the conclusion of the paper 
with highlights on the contributions and findings 
made. 
 
2. LITERATURE REVIEW 
The modularity architectural approach of 
microservices is associated with the pioneering 
paper of Newman (2015) that introduced design 
principles to break down monolithic application 
into smaller, independently deployable services. 
His contributions focused on a self-governing 
service, local contexts and distributed data 
handling. Nevertheless, these principles formed 
the foundation on which microservice adoption 
was based even though they were mostly 
unprepared to the current ecosystem of cloud-
native that has developed. Accordingly, the 
Newman framework did not extend completely to 
the requirements of dynamic provisioning of an 
infrastructure, orchestrating containers, as well as 
discovering services that are essential to the 
contemporary cloud-native applications. 
Dragoni et al. (2017) have further built upon this 
knowledge presenting a comprehensive taxonomy 
of service decomposition strategies. Through their 
studies, they noted that microservices can be 
classified and arranged into business capabilities 
and technical constraints. They were some of the 
first to make things very clear on the formal level 
with respect to microservice granularity and 
communication protocols, but this was not 
empirically verified in large-scale and latency-
sensitive application environments. It is important 
to note that the study did not benchmark on two 
main performance indicators in systems that run 
on edge or hybrid computing environment, 
namely, scalability and fault tolerance. 



       3 Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

Falayi Olukayode et al / Cloud-Native Microservices Architecture for Scalable and Next-Generation 
Computing Applications 

  

 

 
 

Concurrently, a study report by Fowler and Lewis 
(2020) recommended best practices on continuous 
integration and delivery (CI/CD) pipelines, which 
are at the core of the enablement of the rapid 
deployment and rollback of architectures based in 
microservices. Their suggestions have gained a lot 
of popularity in DevOps processes. Nonetheless, 
their discussion was mainly focused on general-
purpose enterprise systems and did not consider 
complexities that are presented by AI-based 
workloads or distributed analytics, which are 
becoming more common in next generation 
computing. The difficulty in the adjustment of 
these changing uses cases leaves a hole in the 
regulation of CI/CD frameworks to high-frequent, 
real-time deployment pipes. 
More recently, Thones (2021) compared the 
container orchestration strategies, especially the 
ones involving Docker and Kubernetes, which play 
a crucial role in terms of large-scale deployment 
and management of microservices. His work 
focused on system resilience, declarative 
configuration and container lifecycle. However, it 
did not include the performance metrics of the 
dealing with AI inference, sensor data streaming 
and edge computing workload conditions which 
represent the future of computing environments. 
Moreover, the modern research began examining 
serverless computing, service meshes such as Istio, 
and lightweight container runtimes, but the overall 
analysis of the effect they have on latency, 
throughput, and resource consumption in the 
environments when different workloads are 
working on them is scarce. That speaks in favor of 
the necessity of empirical research focused on the 
new location of AI and IoT-based applications that 
the given paper seeks to provide. 
 
3. Proposed Architecture 

3.1 System Overview 
The suggested cloud-native microservices 
architecture has been arranged to contain four co-
integrated layers, and each layer is expected to 
boost modularity, scalability, and transparency in 
computing environments in the next generation. 
This is built on the Containerization layer where 
Docker lightweight containers are built around 
individual services. The method facilitates 
consistency in the environment, platform-
independent portability and promotep cycling. 
Added to this, the Orchestration Layer also 
orchestrates service replication, load balancing, 
rolling updates and failovers using Kubernetes. 
Kubernetes also does service discovery and 
declarative configuration services so that the 
architecture can adapt to its working volume. The 
Communication Layer also provides a durable and 
well-performing communication between services, 
and uses RESTful APIs to communicate over web 
connections and gRPC to communicate over low 
latency and high throughput internal messages 
speed-sensitive workloads, including, real time 
analytics, and AI inference. The Monitoring and 
Logging Layer collects visibility data on an end-to-
end basis, as usually provided by industry 
standard tools such as Prometheus and Grafana or 
Jaeger to monitor metrics and preferably through 
visual dashboards. These are able to provide real-
time performance optimization as the result of 
system administrators being capable of identifying 
anomalies, tracing the root cause, and to be able to 
do this. Combined together these layers create a 
strong and adaptable architecture that can 
maintain sophisticated, scaled and mission-critical 
applications in various sectors like healthcare, 
edge artificial intelligence (AI), and cloud-driven 
internet of things (IoT) platforms. 

 

 
Figure 2. Layered Architecture of the Proposed Cloud-Native Microservices System 



4                                       Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

 

Falayi Olukayode et al / Cloud-Native Microservices Architecture for Scalable and Next-Generation 
Computing Applications 

  

 
 

4. METHODOLOGY 
4.1 Experimental Setup 
In order to analyze the efficiency and capacity of 
the suggested cloud-native microservices 
infrastructure, a use scenario resembling one in 
the real world was developed with the help of real-
time patient data analytics within a smart health 
setting. It represents such a connected hospital 
environment in which multiple patient monitoring 
tools (e.g. wearables, vital sign monitors, and 
sensor devices enabled by the Internet of Things) 
constantly produce time-sensitive health data, 
which must be processed, analyzed, and visualised 
in the shortest possible timeframes. 
The research infrastructure ran over Google 
Kubernetes Engine (GKE) which is a fully managed 

service running on Kubernetes and capable of 
providing high availability, automatic scaling and 
self-healing features. The cluster was created with 
the auto-scaling option switched on, where the 
horizontal scaling of pods is possible against the 
CPU and memory usage. The implementation 
contained various microservices (data ingestion, 
preprocessing, anomaly detection and dashboard 
services) all of which were packaged in Docker 
containers and was managed through Kubernetes. 
Production-grade deployment was replicated 
using Horizontal Pod Autoscaler, Config Maps, and 
Ingress Controllers, which are Kubernetes-native 
structures. 

 

 
Figure 3. Experimental Architecture for Real-Time Patient Data Analytics Using Cloud-Native 

Microservices on GKE 
 
The scope of items included simulated data 
streams of 500 edge devices that reached a similar 
number to real patient monitoring devices, 
because of the behavioral similarity of simulated 
and actual devices sending the physiological 
parameters constantly, such as heart rate, oxygen 
saturation, and temperature. Parallel Docker 
containers were used to create these streams 
under a custom script, which makes their 
concurrency and time-evolution of data flows 
realistic. Message queue systems (e.g., Apache 
Kafka) were also employed as a means to provide 
buffering in the testbed to incoming data, and to 
provide reliability in the delivery of said data to 
downstream services. 
In the form of a comparative baseline, a similar 
monolithic variant of the application was also 

launched on the same GKE cluster. In such 
implementation, services are not designed in a 
modular way with separate scaling; instead, all 
capabilities were packaged into a single unit of 
service. The arrangement enabled a relative-
comparison study between the two systems in 
terms of their major performance metrics, which 
include deployment time, response latency, 
throughput, and failure recovery. 
This experimental setup played a significant role in 
the measurement of the operational benefits of 
microservices compared to monolithic deployment 
when under stressful, high-load scenarios common 
to next-generation environments such as enabling 
smart healthcare. 

 



       5 Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

Falayi Olukayode et al / Cloud-Native Microservices Architecture for Scalable and Next-Generation 
Computing Applications 

  

 

 
 

Table 1. Comparative Deployment Configuration: Microservices vs. Monolithic Architecture 
Component Microservices Deployment Monolithic Deployment 
Architecture Style Loosely Coupled Services Single Unified Service 
Platform GKE with Kubernetes GKE with Kubernetes 
Edge Devices Simulated 500 500 
Message Queue Apache Kafka Embedded Queue in Service 
Scaling Mechanism HorizontalPodAutoscaler Manual VM Scaling 
Observability Stack Prometheus, Grafana, Jaeger Basic Logging Only 

 
4.2 Metrics Evaluated 
In order to properly evaluate the performance 
advantages of proposed cloud-native 
microservices architecture as compared to a 
traditional monolithic architecture a number of 
key evaluation metrics were chosen. The latter 
metrics have been selected to cover not only 
system-wide responsiveness but also dynamic 
resilience of system operations against a variable 
load characteristic of real-time and edge-intensive 
applications. The assessed and analyzed 
performance indicators included the following 
ones: 
 Service Response Time (ms): This 

performance measure is used to determine 
how much time is required by a service to 
respond to a client request. It has a direct 
effect on the user experience, especially in 
sensitive areas such as healthcare and 
financial. In the microservices environment, 
this measurement was brought up per service 
separately with instrumentation with 
Prometheus and tested at different quantities 
of traffic. The architecture was detailed by 
granularity which enabled us to pinpoint 
deficiencies on the service level so that 
performance could be optimized more 
accurately. 

 Deployment Latency (s): Deployment 
latency can be defined as the time it takes to 
deploy a new version of an application or a 
service in other words, it consists of the time 
it takes until a container is initialized, 
orchestration is scheduled, and the service is 
registered. It is important in agile DevOps 
culture where updates and continuous 
integration/deployment (CI/CD) are 
commonly applied. Our experiment compared 
the durations of rollout with the deployment 
of the monolithic and microservices methods 
by utilizing the Kubernetes deployment logs 
and Prometheus metrics. Microservices were 
containerized and loosely coupled, which 

greatly lowered the latency of deploying the 
services due to the possibility to update the 
services individually without causing a 
system-wide outage. 

 Scalability Index (requests/sec under 
load): Scalability index summarises the 
results into the feature of the throughput of 
the stressed system which has been 
quantified as the number of client request it 
can deal with per second without any loss in 
performance. A concurrent request scenario 
was simulated, with a load testing tool (e.g. 
Apache JMeter or Locust) to represent 500 
edge nodes. The microservices architecture 
proved high scalability because of the 
modular nature of scaling services- auto-
scaling of individual services was performed 
with the help of HorizontalPodAutoscaler in 
Kubernetes and the system worked under 
heavy load. 

 Failure Recovery Time (s): It is based on the 
time measure used to indicate how resilient 
the system is to serve level failures. The 
trigger of such in a real-world system may be 
container crashes, node outages, or resource 
exhaustion. We caused a failure in our 
services to simulate such failures and 
recorded the recovery time of services right 
after the health check of Kubernetes resorted 
to complete service restoration. The recovery 
of microservices was much faster, and the 
restarts in the containers occur in a matter of 
seconds compared to the monolithic system, 
where the failure may lead to the impact of 
the whole application of one point of failure. 

In combination, all these metrics offer a multi-
dimensional performance snapshot of the 
suggested architecture and this effectively proves 
its compatibility in terms of serious application in 
the successive-generation computing applications 
that require high accessibility, quick 
responsiveness and operational nimbleness. 



6                                       Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

 

Falayi Olukayode et al / Cloud-Native Microservices Architecture for Scalable and Next-Generation 
Computing Applications 

  

 
 

 
Figure 4. Comparative Performance Metrics: Microservices vs. Monolithic Architecture 

 
Table 2. Quantitative Comparison of System Performance Metrics 

Metric Monolithic System Microservices System Improvement (%) 
Response Time (ms) 420 210 50 
Deployment Latency 
(s) 

320 70 78.12 

Scalability Index 
(req/s) 

4500 12000 166.67 

Failure Recovery Time 
(s) 

19 5 73.68 

 
5. RESULTS AND DISCUSSION 
As the performance check provided, the offered 
cloud-native microservices architecture performs 
by far better than the monolithic deployment on all 
the main metrics. Response time of the service was 
an important parameter in real-time applications 
like smart healthcare, which decreased 
significantly by 50 percentage in the microservices 
approachi.e., 420 ms required in the monolithic 
version to 210 ms in microservice. This is mainly 
because of the fact that scaling and isolation of 
services is independent meaning that every 
component is in a position to service requests 
without being overwhelmed by other processes in 
the system. Moreover, lightweight communication 
protocol (lightweight means fewer 
succeptabilities) like gRPC has offered even more 
latency due to reducing processing overhead and 
inter-service latency. Such improvements prove 
the architecture is ready to be used in latency-

sensitive areas, allowing a greater rate of decision-
making and better user experience. 
The deployment time latency was also radically 
shortened as well-320 seconds in the monolithic 
deployment and 70 seconds in the microservices 
deployment, meaning an improvement of 78%. 
This is straightforwardly the result of the loosely 
coupled aspect of microservices that fields single 
services that can be progressively updated, 
implemented, or reversed without the system 
being restarted fully. Orchestration was done using 
Kubernetes, and CI/CD automation also optimized 
the deployment pipeline. This form of agility has 
no valuation in continuous delivery, quick 
patching, or a real-time upgrading of features. Of 
particular note, this decoupled deployment system 
was also used to allow fine grained control of 
versions and service specific monitoring, which 
made debugging and performance tuning more 
efficient and localized. 

 



       7 Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

Falayi Olukayode et al / Cloud-Native Microservices Architecture for Scalable and Next-Generation 
Computing Applications 

  

 

 
 

 
Figure 5. Performance Comparison between Monolithic and Cloud-Native Microservices Architectures 

across Key Metrics 
 
Also the recovery time after failure was also 
lowered to 5 seconds, indicating that the resiliency 
had increased by 74 percent to 19 seconds. The 
key factor that led to this enhancement is the built-
in self healing features of Kubernetes, including 
automatic restart, health checking and rolling 
update. Scalability also increased by 166 percent 
with the microservices architecture accepting 
12,000 requests in a second as opposed to 4,500 
under the monolithic architecture. It was achieved 
with the help of HorizontalPodAutoscalerthat 

proportionally scaled replicas of services with the 
CPU usage and amount of traffic that was required. 
These revelations indicate that microservices not 
only provide optimized performance at run time, 
but also a greater availability, load balancing, and 
graceful degradation in case of failures. In 
aggregate, the findings support the argument that 
cloud-native microservices systems have the 
inherent quality of being more applicable in next-
generation, real-time and mission-critical 
computing systems. 

 
Table 3. Performance Evaluation of Monolithic vs. Microservices Architectures 

Metric Monolithic 
Architecture 

Microservices 
Architecture 

Improvement (%) 

Response Time (ms) 420 210 50 
Deployment Latency 
(s) 

320 70 78.12 

Failure Recovery 
Time (s) 

19 5 73.68 

Scalability Index 
(req/sec) 

4500 12000 166.67 

 
6. CONCLUSION 
The paper proves that the paradigm of cloud-
native microservices architecture is a very 
successful paradigm of designing resilient, 
scalable, and supportable systems according to the 
needs of a future computing world, including real-
time analytics, edge computing and applications 
with AI capabilities. The suggested architecture is 
more than capable of delivering big performance 
improvements in terms of not only a shortened 
response time but also a speedier deployment, 
scalability, and answers to recovery failures, 

thanks to the power of modular service 
decomposition, containerization with Docker, and 
orchestration with Kubernetes. In an example of a 
smart healthcare setting, the comparative use of 
service isolation, the horizontal auto-scaling 
system, and observability tools like Prometheus 
and Jaeger are part of the operational excellence 
framework and quick resolution of faults. 
Regardless of the current issues with the inter-
service communication, management of 
consistency, as well as the complex monitoring, the 
further maturity of service meshes, CI/CD 



8                                       Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

 

Falayi Olukayode et al / Cloud-Native Microservices Architecture for Scalable and Next-Generation 
Computing Applications 

  

 
 

automation, and DevSecOps patterns offers a 
strong basis to overcome the obstacles. Finally, it is 
not only the paper before you demonstrates a 
proven architectural model but also provides 
applicable industry-actionable research and a 
repeatable framework to enable the design and 
implementation of the cloud-native microservices 
infrastructure into mission-critical, performance-
sensitive areas. 
 
REFERENCES 
[1] Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, 

M., Mustafin, R., &Safina, L. (2017). 
Microservices: How to make your 
application scale. Software, Services, and 
Systems, 95–104. 
https://doi.org/10.1007/978-3-319-60246-
0_7 

[2] Newman, S. (2015). Building Microservices: 
Designing Fine-Grained Systems. O’Reilly 
Media. 

[3] Pahl, C., &Jamshidi, P. (2016). Microservices: 
A systematic mapping study. CLOSER 2016: 
6th International Conference on Cloud 
Computing and Services Science, 137–146. 

[4] Hightower, K., Burns, B., & Beda, J. (2017). 
Kubernetes: Up and Running – Dive into the 
Future of Infrastructure. O’Reilly Media. 

[5] Villamizar, M., et al. (2016). Evaluating the 
monolithic and the microservice 

architecture pattern to deploy web 
applications in the cloud. 2016 10th 
Computing Colombian Conference (10CCC), 
1–8. 
https://doi.org/10.1109/ColumbianCC.201
6.7762750 

[6] Thönes, J. (2015). Microservices. IEEE 
Software, 32(1), 116–116. 
https://doi.org/10.1109/MS.2015.11 

[7] Taibi, D., Lenarduzzi, V., &Pahl, C. (2018). 
Architectural patterns for microservices: A 
systematic mapping study. 2018 IEEE 8th 
International Conference on Cloud 
Computing and Services Science (CLOSER), 
221–232. 

[8] Fowler, M., & Lewis, J. (2014). 
Microservices: A definition of this new 
architectural term. martinfowler.com. 
https://martinfowler.com/articles/microse
rvices.html 

[9] Sill, A. (2016). The design and architecture 
of microservices. IEEE Cloud Computing, 
3(5), 76–80. 
https://doi.org/10.1109/MCC.2016.111 

[10] Balalaie, A., Heydarnoori, A., &Jamshidi, P. 
(2016). Microservices architecture enables 
devops: Migration to a cloud-native 
architecture. IEEE Software, 33(3), 42–52. 
https://doi.org/10.1109/MS.2016.64 

 


