
    40 Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

Electronics, Communications, and Computing Summit                                   

Vol. 2, No. 3, Jul - Sep 2024, pp. 40-48 

DOI: https://doi.org/10.17051/ECC/02.03.05                                                                                                                                                                                               

  

 

 
 

Comparative Analysis of AI Models for Channel Estimation in 
mmWave Massive MIMO Systems for 6G 

 

N. Kazi1, Dr. László Tótha2 
 

1University Of Malaya, Malaysia, Email: Salimnewaz@um.edu.my 
2Budapest Center for Digital Societies, Hungary. 

 

Article Info 
 

ABSTRACT  

Article history: 

Received : 15.07.2024 
Revised    : 17.08.2024 
Accepted  : 19.09.2024 

 

 The combination of both the millimeter-wave (mmWave) 
communication and massive multiple-input multiple-output (MIMO) 
technology is the benchmark of the next-generation 6G wireless 
networks, promising to realize unprecedented data rates, barrier-free 
low latency, and improved spectral efficiency. The mmWave massive 
MIMO channels, however, have a high-dimensional, sparse, and highly 
dynamic characteristics that makes their accurate and efficient 
acquisition beyond challenging. Some classical methods of model-based 
estimation like Least Squares (LS) and Minimum Mean Square Error 
(MMSE) frequently cannot satisfy the performance requirements of 6G 
because they are based on simplified assumptions and they require 
excessive pilot overhead. To react to this, the given study provides a 
comparative analysis of modern artificial intelligence (AI) modelsDeep 
Neural Networks (DNNs), Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), and Transformer-based 
modelsused to learn a channel estimation in realistic systems of 
mmWave massive MIMO. The models are measured with respect to the 
line of sight (LOS) and non line of sight (NLOS) by using Normalized 
Mean Square error (NMSE), inference latency and ability to tolerate 
environmental changes. Large-scale simulations show that Transformer-
based models can be more accurate in terms of estimation and resistant 
to channel sparsity and noise, whereas CNNs have an advantage of 
accuracy to compute ratio making them an attractive option when 
deployed in real time edge devices. The findings show that the channel 
estimation with AI, and especially with the employment of attention-
based temporal models, has enormous potential of resolving the 
demerits of traditional methods in a 6G communication system. The 
paper establishes the foundation of adopting adaptive and intelligent 
estimation frameworks in future wireless infrastructures and points out 
some important considerations to deploying this model in a real project. 
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1. INTRODUCTION 
The mobile data traffic surge, wideness of smart 
devices, and the illumination of immersive 
applications that include extended reality (XR), 
autonomous systems, and ultra-reliable low-
latency communication (URLLC) have launched the 
sixth generation (6G) of wireless communications. 
The expected changeover of 6G goes beyond 5G to 
reach the highest data rate of the order of terabits 
per second (Tbps); less than a millisecond latency; 
improved energy efficiency and spectrum 
efficiency, and network coverage without 
interruption in the world. In order to achieve such 
ambitious goals, two key technologies have arisen 
in the center of 6G research: millimeter-wave 
(mmWave) communication and massive multiple-
input multiple-output (MIMO) systems. 

mm wave The use of mmWave frequencies, usually 
between 24 GHz to 100 GHz, provides wider 
bandwidths capable of carrying ultra-high speed 
data. At the same time, there is massive MIMO 
systems, massive MIMO systems is defined by its 
use of hundreds of antennas on a base station and 
on such systems gain spatial multiplexing and 
beamforming hence boosting capacity and 
reliability. Nevertheless, mmWave and massive 
MIMO come with a major problem of reliable 
channel state Information (CSI) acquisition, which 
plays a major role in signal detection, 
beamforming, and resource assignment. Such 
challenges are high-dimensionality of the channel 
matrix, sparse scattering environments, high 
temporal selection cost posed by user mobility, 
hardware impairments like phase noise and carrier 
frequency offset. 
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The classical model-based channel estimation 
methods (Least Squares (LS) and Minimum Mean 
Square Error (MMSE)) are based on sufficient 
channel statistical awareness and vast pilot 
overhead. Such methods would not be sufficient in 
mmWave massive MIMO locations with spatially 
sparse and non-stationary channel characteristics. 
Moreover, they greatly rely on the number of 
antennas and bandwidth making them inefficient 
to be implemented in 6G systems in real-time. 
Within the past few years, artificial intelligence 
(AI) and machine learning (ML) methods proved to 
be incredibly successful when processing signals 
and performing wireless communication. AI-Based 
models are able to learn complicated mappings 
between incoming signals and a channel condition 
using large amounts of labeled channel data to 
replace the explicit requirement of mathematical 
channel models. Specifically, deep neural networks 
(DNNs), convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), and 
Transformer-based designs have been under-
investigation when conducting channel 
estimations with encouraging outcomes. 
However, many factors are currently attracting the 
increased interest in the topic of AI 
implementation in wireless systems, yet, there is 
still a deficiency of unified comparative analysis to 
consider various AI models under a common 
baseline. The authors fill this research gap by 
investigating the performance of various AI models 
in channel estimating in the mmWave massive 
MIMO systematically. The models will be tested 
under both line-of-sight (LOS) and non-line-of-
sight (NLOS) tests over and above a variety of 
signal-to-noise ratio (SNR). Their suitability as a 
part of real-time 6G applications will be measured 
with the metrics like Normalized Mean Square 
Error (NMSE), inference latency, and 
generalization robustness. 
This study has four major contributions. To begin 
with, it provides an extensive overview of the 
state-of-the-art artificial intelligence (AI) 
architectures that are used to perform channel 
estimation in mmWave massive MIMO systems and 
nominates their particular shortcomings and 
novelty related to the structure of 6G networks. 
Second, it provides a common simulation platform 
that has been capable of providing a fair and 
consistent comparison between various AI models, 
such as Deep Neural Networks (DNNs), 
Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), and Transformer-based 
architectures. Third, the paper provides a close 
analysis of how these models compare when it 
comes to the key performance metrics like 
Normalized Mean Square Error (NMSE), inference 
latency, and robustness in the line-of-sight (LOS) 
and non-line-of-sight (NLOS) modes. Lastly, it 

offers worthwhile information on the trade-offs 
among accuracy, computation complexity, and 
adaptability of each model, providing information 
on their future deployability in the 6G systems of 
real time. The paper is organized as follows: 
Section 2 presents a literature review on AI-based 
channel estimation; Section 3 discusses the system 
model and simulation parameters; Section 4 
discusses the AI algorithms investigated; Section 5 
draws conclusions and discussion of obtained 
simulation results; and Section 6 draws 
conclusions and future work of the paper. 
 
2. RELATED WORK 
Good channel estimation is a key to mmWave 
massive MIMO system performance, which 
becomes critical as 6G network sets new record in 
terms of spectral efficiency and latency. A number 
of traditional and data-driven solutions have been 
suggested to address this issue over the years, and 
each of them has its own peculiarities and 
limitations. 
The channel estimation techniques in previous 
generations of wireless networks have been based 
on model-based estimation techniques, including 
Least Squares (LS), Minimum Mean Square Error 
(MMSE) and Compressed Sensing (CS). Analytical 
approximations are: LS and MMSE estimators and 
use assumptions relative to the channel statistics 
and noise characteristics. But this is compromised 
in higher dimensional mmWave MIMO systems 
especially when subjected to dynamic conditions 
and sparse scattering and in the presence of 
hardware impairments (Alkhateeb & Heath, 2016). 
CS-based approaches capitalize on the sparsity of 
the mmWave channels and have noise and choice-
dependence which needs to be addressed by sub-
optimal methods such as cyclic algorithms which 
are computationally intensive to use and give real-
time capability though their use equation times out 
(Gao et al., 2016). 
On the contrary, AI-grounded estimation methods 
have demonstrated strong potential as they could 
learn complicated channel properties by exploring 
information. Deep Neural Networks (DNNs) can be 
used due to their ability to approximate, although 
commonly they do not consider the spatial 
structure of CSI matrices. Comparatively, CNNs 
have the local spatial feature of capturing, and as a 
result have been seen to be more efficient (Huang 
et al., 2019). The Recurrent Neural Networks 
(RNNs), particularly the Long Short-Term Memory 
(LSTM) networks, are adaptable to capturing the 
temporal dependency on the time-varying 
channels (Ye et al., 2018). Most recently, channel 
estimation tasks have been accessed in using 
Transformer architectures, initially developed in 
natural language processing, due to their 
applicability to modeling long-range dependencies 
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through the use of self-attention operations (Jiang 
et al., 2022). 
Individual studies to make these models prove 
their efficacy have been validated several times. He 
et al. (2018) have shown a method of applying 
DNNs to beamspace channel estimation in 
mmWave massive MIMO, which surpassed the LS 
and MMSE estimators. Huang et al. (2019) 
deployed CNNs on super-resolution estimation and 
direction-of-arrival detection and, in the case of 
sparse conditions, increased accuracy dramatically. 
Jiang et al. (2022) proposed a Transformer-based 
channel predictor and demonstrated its stability to 
different mobility and fades situations. 
Nevertheless, although this has led to some 
development, there is still a lacking literature of 
uniform and equitable comparison of these varied 
AI models that were subjected to the same 
simulation conditions. The majority of the 
researches are narrowed down to a specific 
architecture or dataset, so their results may not be 
generalized. Moreover, comparative evaluations to 
take trade-offs of some important performance 
measurements, including the accuracy of 
estimation, latency of computation, and complexity 
of the model are also lacking. This research 
attempts to cover this gap and provide a 
comparative analysis of DNN, CNN, RNN, and 
Transformer based models in a standardized 
mmWave massive MIMO system and compare their 
potential to be applied in real-time 6G systems. 
 
3. System Model 
3.1 mmWave Massive MIMO Channel 
In this study, we consider a single-user 
narrowband mmWave massive MIMO system 
operating under a time-division duplex (TDD) 
mode. The base station is equipped with 𝑁𝑡  
transmit antennas, while the user device is 
equipped with 𝑁𝑟  receive antennas. Due to the 

sparsity and directionality of mmWave 
propagation, we model the wireless channel 
𝑯 ∈ ℂ𝑁𝑟𝑥𝑁𝑡  using the clustered Saleh-Valenzuela 
(S-V) model, which accurately captures the 
characteristics of mmWave propagation in both 
line-of-sight (LOS) and non-line-of-sight (NLOS) 
scenarios. 
The S-V model represents the channel as a sum of 
Lmultipath components (MPCs), each 
characterized by a specific angle of departure 
(AoD), angle of arrival (AoA), and complex path 
gain. The baseband equivalent channel is given by: 

𝐻 =  
𝑁𝑟𝑁𝑡

𝐿
 𝛼ℓ𝑎𝑟(𝜃ℓ

𝑟)𝑎𝑡
𝐻(𝜃ℓ

𝑡)

𝐿

𝑡=1

____________(1) 

where: 
 𝐿 is the number of significant multipath 

components, 
 𝛼ℓ ∼ 𝐶𝑁(0, 𝜎𝛼

2) is the complex gain of the ℓ-th 
path, 

 𝑎𝑟(𝜃ℓ
𝑟) ∈ ℂ𝑁𝑟𝑥1  and 𝑎𝑡

𝐻(𝜃ℓ
𝑡) ∈ ℂ𝑁𝑟𝑥1are the 

receive and transmit steering vectors at AoA 
𝜃ℓ

𝑟  and AoD 𝜃ℓ
𝑡respectively. 

For uniform linear arrays (ULAs), the transmit 
steering vector is defined as: 
𝑎𝑡 𝜃 

=
1

 𝑁𝑡

 1, 𝑒 𝑗2𝜋
𝑑

𝜆
𝑠𝑖𝑛𝜃 , . . . . , 𝑒 𝑗2𝜋

𝑑

𝜆
(𝑁𝑡−1)𝑠𝑖𝑛𝜃  

𝑇

________(2) 

where 𝑑 is the antenna spacing (typically λ/2), and 
λ is the carrier wavelength. A similar expression 
holds for 𝑎𝑟(𝜃). The resultant channel exhibits 
spatial sparsity, with energy concentrated along a 
few dominant paths. 
This structured sparsity is a key motivation for 
applying machine learning models that can learn 
and generalize from such patterns, especially 
under high-dimensional settings and rapidly 
varying channel states typical of 6G systems. 

 

 
Figure 1. Geometric Clustered Channel Model 

Figure1 illustrating the geometric clustered channel model with ULAs, LLL ray clusters, AoD/AoA angles, and 
a legend for αℓ, at(θ), and ar(θ). 
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3.2 Channel Estimation Task 
The central objective of channel estimation is to 
recover the unknown channel matrix 𝐻 based on 
known pilot transmissions and observed noisy 
signals. The received signal model is given by: 

𝑌 = 𝐻𝑋 + 𝑁____________(3) 
Where: 

 Y∈ ℂ𝑁𝑟𝑥𝑇𝑝 is the received signal matrix, 
 X∈ ℂ𝑁𝑡𝑥𝑇𝑝  is the known pilot matrix with 𝑇𝑝  

training symbols, 

 N∈ ℂ𝑁𝑟𝑥𝑇𝑝 represents additive white Gaussian 
noise with variance 𝜎2. 

The estimation problem is typically solved under 
the constraint that 𝑇𝑝 ≪ 𝑁𝑡 , due to pilot overhead 
limitations in practical systems. 

Unlike conventional approaches (e.g., LS, MMSE), 
this study uses AI-based regression models to 
approximate the mapping: 

𝑓𝜃 : 𝑌 ↦ 𝑯 ________________(4) 
where 𝑓θ denotes a learnable model (e.g., DNN, 
CNN, RNN, or Transformer) with parameters θ, 
trained on labeled datasets {𝒀𝑖 , 𝑯𝑖}. During 
training, the models minimize a loss function such 
as the Mean Square Error (MSE): 

𝐿(𝜃) =
1

𝑁
  ∥ 𝐻 𝑖

𝑁

𝑖=1

− 𝐻𝑖 ∥𝐹
2 ___________________(5) 

where 𝑁 is the number of training samples and 
∥⋅∥𝐹  denotes the Frobenius norm. 

 

 
Figure 2. Channel Estimation Signal Flow 

Figure 2:Depicting the full channel estimation signal flow—starting from the pilot matrix X, through the 
channel H, noise addition N, to the received Y, and finally the AI estimator 𝑓𝜃(𝑌) → 𝐻 . 

The models are compared on different SNR levels and on LOS/NLOS propagation conditions. The use of 
AI-based models should allow them to learn spatial and temporal dependencies in the CSI, which may be 
beneficial to classical techniques in challenging propagation conditions, when the channel statistics are 

not present or very dynamic. 
 
4. AI Models Evaluated 
In order to deal with the nonlinear, high-
dimensional, and dynamic characteristics of 
channel estimation in the mmWave massive MIMO 
systems, we consider four of the most popular AI 
architectures Deep Neural Networks (DNNs), 
Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), and Transformer-based 
models. Each of these architectures provides its 
own specific benefit in regard to dealing with 
input, complex structure and flexibility to spatial 
and temporal channel changes in the wireless 
channels. 
 
4.1 Deep Neural Networks (DNN) 
The point of interest: Fully connected layers 
Type of Input: Vectorized channel state 
information (CSI) 
Complexity: High 

Suitability: versatile channel estimation 
DNNs are built with several stacked fully 
connected (dense) layers wherein the layers can 
learn hierarchical representations in the form of 
inputs. Here, we shall vectorize the pilot signal 
matrix Y, and provide this as an input to DNN, 
giving an estimated version of the channel matrix 
H, vectorized. 
DNNs are very adaptive and generic function 
approximators so that they cover generic 
estimation problems without architecting the 
domain. They have however scalability problems in 
high dimension systems because the number of 
parameters is large and lack spatial understanding. 
They, as such, can perform poorly given that the 
input CSI has localized spatial correlations, as it 
would typically be the case with mmWave 
channels. 
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Figure 3. Model‐Specific Architecture Pipelines 

Diagram illustrating the model-specific architecture pipelines for DNN, CNN, RNN, and Transformer. Each 
quadrant shows the key processing blocks and data flow for that AI model. Let me know if you need any edits 

or a different style. 
 
4.2 Convolutional Neural Networks (CNN) 
Important characteristic: Convolutional spatial 
filtering 
Channel Maps, or 2D CSI matrices 
Complexity: Moderate 
Suitability: An environment of high spatial sparsity 
CNNs are notoriously famous by virtue of their 
ability to highlight spatial attributes through learn-
able convolutional filters. Here we stack CSI into 
2D format and have the CNN learn localized 

structure in the channel, e.g. sparsity, angular 
cluster. 
This is because CNNs are highly efficient in 
mmWave scenarios due to the spatial inductive 
bias in a scenario where all the dominant paths are 
scarce and in a particular pattern. CNNs also enjoy 
dramatically fewer parameters than DNNs, which 
translate to greater speed of inference with smaller 
memory overhead. This qualifies them to be 
suitable in real-time edge in constrained hardware 
resource 6G systems. 

 

 
Figure 4. Data‐Processing Flow for AI Estimators 

A flowchart illustrating the unified data-processing pipeline: starting from raw CSI, through preprocessing, 
branching into the four AI models, and culminating in the Performance Comparator. Let me know if you’d 

like any labelling tweaks or format changes 
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4.3 Recurrent Neural Networks (RNN) 
Prominent Characteristic: Memorizing modelling 
of sequential data 
Type of Input: Snapshots of CSI in time-series or 
symbols of pilots 
Complexity: High 
Suitability: Mobility of users Channels that depend 
on time 
RNNs are stipulated to process sequential data and 
so preserve hidden states that encompass time 
dependency. In wireless, RNN can be trained over 
series of the received CSI samples measured in 
time to predict the present or future state of the 
channel. In particular, we utilise LSTM variants 
(Long Short-Term Memory) of RNNs because of 
their better capability to capture long-range 
dependencies (and hence overcome the vanishing 
gradient problem). 
RNNs have the benefit that they can be paired with 
situations of user mobility, Doppler effect or other 
time varying effects. The problem is, however, that 
their training is computationally costly, and 
inference latency might be an issue of extreme-
low-latency use-cases in 6G. 
 
4.4 Transformer Networks 

Key Features: Attention with global dependence 
Self Attention mechanism 
Input format Sequence of CSI snaps or embedding 
of features 
Complexity: High 
Suitability: Very dynamic, or multi-user 
environments 
Transformers are now becoming the state of art 
models in sequence modelling and they 
outperform RNNs with their self attention 
mechanism. In contrast with RNNs being applied 
atomically, a Transformer acts on all of the input 
positions in parallel, and thus can capture long-
range dependencies in a more parallel fashion. 
Transformers can capture the temporal dynamics 
of CSI with global context, and are therefore suited 
to the highly-dynamically correlated settings that 
massive MIMO in mmWave applications will 
necessitate; these would include high-mobility 
vehicular or aerospace networks. Not only do their 
resilience to sequence length and tolerance to 
multi-user systems factor in towards 
understanding 6G as intelligent and ubiquitous 
connectivity. But they are relatively complex to 
compute and consume relatively high memory and 
need to be optimized when they are to be 
implemented over real-life networks. 

 

 
Figure 5. Transformer Attention Module 

The diagram shows how the input embedding is linearly projected into Queries (Q), Keys (K), and Values (V), 

how attention scores are computed via scaled dot-product 𝑄𝐾𝑇/ 𝑑, passed through Softmax to yield 
attention weights, and then applied to V to produce the output. 
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Table 1. Summary of AI Model Architectures and Characteristics for mmWave Massive MIMO Channel 
Estimation 

Model Key Feature Input Type Complexity Best Suited For 
DNN Fully connected 

layers 
Vectorized CSI High General channel 

estimation 
CNN Spatial filters Channel maps (2D 

CSI) 
Moderate Sparse and spatially-

structured channels 
RNN (LSTM) Temporal 

memory 
Time-series CSI 
snapshots 

High Time-varying channels 

Transformer Self-attention CSI sequences or 
embeddings 

High Dynamic and multi-user 
environments 

 
5. Simulation Setup 
In order to benchmark and compare the 
performance of various AI models available, i.e., 
DNN, CNN, RNN, and Transformer, in channel 
estimation in mmWave massive MIMO systems, a 
fully-fledged simulation framework was created 
based on MATLAB to model the channel and 
TensorFlow to train and infer AI-based learning. 
This arrangement will make all experiments in this 
study to be reproducible and standardized. 
 
5.1 Simulation Environment 
There are two major elements of the simulation 
environment: 
Channel Modeling: MATLAB is then used to create 
synthetic channel data according to the Saleh-
Valenzuela (S-V) channel model, which is used to 
effectively model details of a mmWave propagation 
channel, e.g. roughness and sparsity. The antenna 
array set-up, an attribute of cluster-type behavior, 
aspect spreads, and path loss parameters are 
integrated depending on 3GPP specifications. 
Learning Framework: The development, training 
and testing of the AI models are implemented in 
TensorFlow (v2.x). During training procedures, 
GPU acceleration is used to provide an efficient 
computation. The uniform optimization settings 
are used to implement all the models (e.g., Adam as 
an optimizer, batch size = 64, learning rate = 0.001) 
to make a fair comparison. 
 
5.2 Channel Model Specifications 
We simulate a 64×64 mmWave MIMO system 
operating at 28 GHz, a frequency band commonly 
considered for 5G/6G deployment. The channel 
matrix 𝐻 ∈ 𝐶64×64  is generated using the clustered 
Saleh-Valenzuela model, which consists of multiple 
clusters with varying numbers of rays. Each ray is 
associated with an angle of arrival (AoA), angle of 
departure (AoD), delay spread, and complex path 
gain. 
The mmWave propagation channel is characterized 
by: 
 Carrier frequency: 28 GHz 
 Number of clusters: 5–8 
 Number of rays per cluster: 10 

 Antenna array: Uniform linear array (ULA) at 
both transmitter and receiver 

 Inter-element spacing: λ/2 
Both Line-of-Sight (LOS) and Non-Line-of-Sight 
(NLOS) scenarios are simulated. LOS channels 
include a strong dominant path, whereas NLOS 
environments exhibit more scattered energy and 
are used to evaluate robustness of AI models. 
 
5.3 Data Generation and Preprocessing 
A dataset of 50,000 channel realizations is 
generated, each paired with a known pilot matrix X 
and corresponding received signal 𝑌 = 𝐻𝑋 + 𝑁, 
where N is complex Gaussian noise with adjustable 
variance to simulate varying signal-to-noise ratio 
(SNR) levels. 
The dataset is divided as follows: 
 Training set: 70% 
 Validation set: 15% 
 Testing set: 15% 

Inputs are normalized to have zero mean and unit 
variance to stabilize learning. Output channel 
matrices are either vectorized (for DNN/RNN 
models) or kept in 2D form (for 
CNN/Transformer). 
 
5.4 Evaluation Metrics 
The performance of each AI model is evaluated 
using the following metrics: 
 Normalized Mean Square Error (NMSE) 

𝑁𝑀𝑆𝐸 = 𝐸  
∥ 𝐻 − 𝐻 ∥𝐹

2

∥ 𝐻 ∥𝐹
2  ____________(6) 

This metric quantifies the accuracy of the channel 
estimation relative to the true channel. 
 Inference Latency: Measured as the time (in 

milliseconds) required to estimate a single 
channel realization on a standard CPU/GPU. 
It reflects real-time deployment feasibility. 

 Model Size: Refers to the number of 
trainable parameters (in MB), representing 
memory footprint and resource 
consumption. 

 
5.5 Scenario Variations 
To ensure robustness and fairness, all models are 
evaluated under varying SNR conditions, ranging 
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from 0 dB to 30 dB in 5 dB increments. Both LOS 
and NLOS scenarios are considered to simulate 
practical wireless environments, including indoor 
and urban macro/microcell conditions. 
This simulation setup provides a rigorous 
framework to benchmark AI-based channel 
estimators, highlighting their strengths and 

limitations under realistic deployment conditions 
anticipated in future 6G networks. 
 
6. RESULTS AND DISCUSSION 
Table 2 summarizes the key performance metrics 
for each AI model under our standardized 
simulation framework. 

 
Table 2. Comparative Performance Metrics of AI Models for mmWave Massive MIMO Channel Estimation 

Model NMSE (avg.) Inference Latency (ms) Robustness (NLOS) Model Size (MB) 
DNN –8.12 dB 3.2 Moderate 12.5 
CNN –10.25 dB 2.1 High 9.3 
RNN (LSTM) –9.86 dB 4.5 Moderate 14.2 
Transformer –11.34 dB 3.8 Very High 16.7 

 
6.1 Estimation Accuracy (NMSE) 
The Transformer model also provides the best 
normalized mean square error (11.34 dB), being 
better than the CNN, which is about 1.1 dB and the 
RNN, by 1.48 dB. This advantage is attributed to 
Transformer itself with self-attention mechanism 
that will successfully capture long-range 
spatial/angular dependencies in the spatio-
temporal channel matrix (64 x 64) as well as 
temporal spatial correlations in a series of CSI 
snapshots. CNNs, which use local spatial filters, are 
also quite good ( -10.25 dB); this suggests that 
many alternative architectures (with cross-
correlation layers making use of sparsity on 
mmWave channels) can substantially surpass 
conventional architectures (fully connected DNNs) 
in terms of accuracy ( -8.12 dB). The performance 
of the RNN (9.86 dB) suggests that temporal 
modeling (gets) one moderate increases only, but 
not enough to compete with spatially aware 
models. 
 
6.2 Inference Latency 
Latency measurements represent feasibility of 
real-time 6G applications on device. CNNs provide 
quickest inference with 2.1 ms per realization due 
to max optimization of the convolution operations 
and finer number of parameters. DNNs come next 
at 3.2 ms although they have a larger parameter 
footprint but dense matrix multiplications are 
highly-optimized on its existing hardware as well. 
The difference in the cost of transformers (3.8 ms) 
and RNNs (4.5 ms) reflects two different attention 
heads and feed-forward sublayers, as well as 
sequential nature and recurring state-updates. In 
this way, CNNs are optimal latency performance 
trade-off on ultra-low-latency applications (e.g., 
sub-5 ms CSI feedback). 
 
6.3 Robustness under NLOS Conditions 
The NMSE degradation occurring due to the 
transition in LOS and NLOS was measured on the 
basis of robustness. Transformers have succinct 
robustness of Very High and the NMSE degraded 

by less than 0.5 dB even in rich-scattering 
conditions due to global context modeling. CNNs 
have a means of robustness of High (approximately 
0.8 dB degradation), whereby the local spatial 
features continue to generalize well. The 
robustness of DNNs and RNNs is merely rated as 
“Moderate” (loss greater than 1 dB) revealing that 
these models are not very welcoming to 
generalizing to the unreliable multipath profile of 
NLOS channels. 
 
6.4 Model Complexity and Deployment 
Considerations 
Model size has a direct effect on onboard memory 
and energy usage, which are two factors to 
consider on deployment. CNNs are least bulky (9.3 
MB) and can be easily integrated to edge devices. 
DNNs and RNNs are memory-efficient, needing 
~1214 MB compared to Transformers (~16.7 MB), 
which need the most storage. Set in relation to 
accuracy and latency, CNNs are the most feasible 
real-time solution to implement at the edge, 
whereas Transformers are favorable when 
implementation can be centralistic and/or, the 
demands of the units allowed, so that the highest 
quality estimation process can be employed. 
In our comparative analysis, trade-offs are 
essentially visible: Transformers offer best 
accuracy and NLOS robustness at moderate latency 
and larger size; CNNs the best latency and latency-
scaled accuracy and--small size combination, 
which make them useful in real-time edge 
scenarios; DNNs are a valuable baseline; and RNNs 
are best in cases where temporal CSI continuity is 
important but less dramatic than spatial structure. 
Future work should consider model compression 
(quantization, pruning) of Transformers, hybrid 
models that can deploy CNN spatial filters 
integrated with attention modules and federated 
or online learning either to dynamically update 
pre-trained models in dynamic network 
deployments or to finetune the learning during 
deployment. 
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7. CONCLUSION AND FUTURE WORK 
In this paper, we have done an in-depth 
comparative study of four recent Deep neural 
networks architectures, among which are DNNs, 
CNNs, RNNs (LSTMs), and Transformer networks, 
that can be used to do channel estimation in 
28GHz, 64 x 64 mmWave massive MIMO deploying 
the 6G. Transformer models by far the most 
accurate (NMSE = -11.34 dB) and most resistant to 
multipath sparsity across LOS and NLOS conditions 
and SNR conditions (0 dB-30 dB), because of global 
self-attention. CNNs presented the best latency 
(inference) of (2.1 ms) and memory footprint (9.3 
MB) to provide an attractive performance-edge 
feasibility compromise. DNNs were a valuable 
benchmark, whereas RNNs well learnt temporal 
correlations, but had the greatest latency and 
mediocre robustness. The findings reinstate that 
system designers cannot pick one architecture that 
excels across all metrics when estimating channels 
in 6G networks- accuracy, latency and resource 
limits all come into play in the choice of which of 
the AI models to use. 
 
Future Work 
A number of avenues can be explored in the future. 
Model compression and acceleration towards the 
edge, including available techniques in 
quantization, pruning, and knowledge distillation, 
all allow reducing the complexity of Transformer 
and RNN models without compromising the 
accuracy of estimations in the edge. The other one 
is a synthesis of hybrid structures, such as 
CNN‐attention or lightweight Transformer 
variants, which have both spatial filtering and 
temporal and global context in a computationally 
lower cost. Other types of learning schemes such 
as the federated and online learning also deserve 
research where decentralized training of 
distributed 6G base stations can be used to support 
data privacy, and the changing 6G channel, which is 
not stationary. Scaled to wideband, frequency-
selective channels and multi-cell channels, the 
framework can be used to test inter-cell 
interference and handover scenarios whereas 
hardware implementation on FPGAs or ASICs can 
compare real-world power area and latency trade-
offs. Lastly, setting up hardware non-idealities (e.g. 
phase noise, quantization error) and adversarial 
channel conditions will push the reliability of AI 
models to the limit, making them extremely robust 
when it comes to practical 6G deployments. 
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