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 Vahicular Ad Hoc Networks (VANETs) also introduce interesting issues 
to provide reliable communication as a result of immense node mobility, 
regular changing topologies as well as strict latency requirements. The 
dynamical adaption to such conditions is frequently failing of the 
traditional routing protocols. The given work proposes a new real-time 
adaptive routing framework to optimize Software-Defined Networking 
(SDN) with Graph Neural Networks (GNNs) in VANETs to increase the 
routing intelligence and scale. The SDN controller is able to see the 
global, real-time topology of the network through receipt in distributed 
roadside units (RSUs) of vehicular state and link measurements. This 
information is then dynamically encoded to a spatiotemporal graph 
structure, feed into a GNN architectural model that is trained in 
predicting the optimal routing paths using current, and historical 
mobility patterns. The potential GNN-SDN system is tested by co-
simulations based on the SUMO (to model the traffic) and Mininet-WiFi 
(to emulate the network). The performance measures are studied under 
different traffic rates and mobility conditions such as Packet Delivery 
Ratio (PDR), end-to-end latency, and network throughput. Experimental 
study shows that the GNN-assisted routing is significantly better than 
AODV and DSR protocols as they can achieve an up to 27 percent higher 
PDR and up to 35 percent lower delay in high-mobility urban networks. 
This article shows the effectiveness of Artificial intelligence based SDN 
control planes to solve VANETs routing complexities and leads to the 
development of context-aware, highly scalable and tenacious 
communication infrastructure essential to the delivery of autonomous 
and connected transportation systems in 6G-supported smart cities and 
V2X environments. 
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1. INTRODUCTION 
Vehicular Ad Hoc Networks (VANETs) are essential 
elements of the prospective Intelligent 
Transportation Systems (ITS), the important 
abilities of which are autonomous driving, real-
time navigation, collision avoidance, and dynamic 
traffic control. They allow a smooth interaction of 
Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communications, which are 
critical to improving safety and efficient traffic flow 
in an urban setting with high population density 
[1]. Nevertheless, dynamically changing topology 
of VANETs due to a high level of mobility in 
vehicles, disconnect rates and link failures is a 
source of critical problems regarding routing 
stability, scalability and low-latency protocols [2]. 
Traditional routing protocols e.g.such as AODV, 
DSR and GPSR are either reactive or location-
based. Although they provide lightweight 
operations, they have intrinsic drawbacks of 
having unreliable routes, convergence failures, and 

inflexibility in urban VANET applications [3]. Such 
limitations are more significant in the environment 
where vehicle density is high and the topology is 
constantly changing, and route recalculation 
performed repeatedly worsens the network 
overall. 
Software-Defined Networking (SDN) increasingly 
has emerged as an attractive paradigm to deal with 
these challenges by decoupling the data plane and 
the control plane. SDN facilitates the centralized 
routing decisions, full visibility of the network in 
the global sense, and dynamic enforcement of 
policies [4]. Nevertheless, current SDN-based 
designs are reactive and rule-based, and they do 
not provide the kind of predictive intelligence that 
is required to make a proactive routing choice in a 
fast-changing VANET environment. The 
development of Graph Neural Networks (GNNs) in 
recent years is an especially promising approach to 
learning spatiotemporal dynamics in traffic and 
mobility graphs. GNNs can learn across dynamic 
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topology and come to inference-driven decisions 
on graph structured data. Research findings are 
presented in [5] and [9], which prove the feasibility 
of GNNs in the traffic flow forecasting and 
mobility-aware resource optimization and indicate 
that these models can be used to learn 
sophisticated vehicular dynamics in an urban 
setting. Later, [12] published a GNN-SDN 
architecture of VANETs; however, the model has 
been derived but it is not emulated or validated in 
real time in realistic settings of vehicular 
operations. 
 
Research Gap and Motivation 
Although progress is independent in the SDN-
based VANET control and the GNN-based graph 
learning, there is a significant lack of research in 
the synergetic combination of both towards real-
time adaptive routing. The main problems are: 
• Absence of a centralized architecture that 

would integrate the predictive potential of 
GNN and the centralized control of SDN; 

• Lack of real-time validation schemes that 
combine traffic simulators (e.g. SUMO) and 
network emulators (e.g. Mininet - WiFi); 

• Scalability and inference latency in 
application of GNN models in high-density 
mobility conditions. 

 
Objective and Contribution 
The given paper suggests a real-time adaptive 
routing framework that combines SDN and GNN to 
dynamically forecast and execute optimal route in 
VANETs. The proposed system empowers proactive 
(through encoding vehicular mobility data into 
spatiotemporal graph structures), scalable 
(through inference on graphs based on GNNs) and 
automatically map-aware routing. The resulting 
means to an end is to certify the solution via co-
simulations with SUMO and Mininet-WiFi and 
compare its efficiency in the most essential 
performance parameters such as Packet Delivery 
Ratio (PDR), end-to-end latency, and network 
bandwidth under the different conditions of 
vehicles. 
 
Key Contributions 
1. A novel SDN-GNN hybrid routing architecture 

tailored for dynamic urban VANETs. 
2. Real-time graph construction and training 

pipeline using synthetic and emulated 
mobility data. 

3. Performance comparison against AODV and 
DSR, showing up to 27% improvement in PDR 
and 35% reduction in latency. 

4. Analysis of scalability, model inference 
latency, and potential for 6G V2X integration. 

5. Implementation of a real-time decision 
feedback loop with potential for edge-

deployable GNN inference, enhancing 
responsiveness and deployment feasibility in 
resource-constrained vehicular environments. 

 
2. RELATED WORK 
AODV, DSR and GPSR have been relied upon by 
Vehicular Ad Hoc Networks (VANETs) over the 
past. These protocols are either geographic or 
reactive, and they are made to work based on the 
localized decision-making [4], [8]. Dynamic routing 
protocols such as AODV and DSR do not 
dynamically attempt to discover routes until such a 
time as a route is requested, and have low 
scalability and high route discovery latency in 
dense urban environments. One matter thus 
handled by GPSR is a location-based protocol, 
which provides improved latency through the use 
of positional information, but it does not exhibit 
good robustness under sparse or dynamically 
obstructed conditions [11]. In order to address the 
shortcomings of decentralized protocols, the 
Software-Defined Networking (SDN) is an 
alternative paradigm proposed. SDN separates the 
control plane and data plane and makes routing 
decisions in a central location and provides the 
overall picture of the network. This supports real 
time monitoring, dynamically allocated path and 
policy oriented traffic control. Works like [3], [8] 
have already proven that SDN is useful in 
improving the flexibility/responsiveness of 
routing. The SDN however, becomes less flexible in 
highly dynamic vehicular environments and prone 
to inflexibility to sudden topology change due to 
the reactive or rule-based logic it is enforced to 
work with. 
At the same time Graph Neural Networks (GNNs) 
have found wide application in learning on 
structured data like road networks and traffic 
graphs. GNNs such as Spatio-temporal GNNs (ST-
GCN) & Gated Graph Neural Networks (GGNN) are 
able to extract latent features of vehicular mobility 
patterns and network topology to forecast traffic 
flow or infer routing. e.g., GNNs in congestion 
prediction and the control over the traffic signals: 
[6], [9]. Although powerful, those models are 
normally trained offline and do not form part of 
live network control and they cannot be applied 
directly to real live vehicular routing. Although 
there are these developments, there is very little 
empirical studies on effects of integrating SDN and 
GNNs in an unified routing system framework in 
VANETs. [12] was the first to present a theoretical 
approach to the cooperation of GNN-SDN but was 
not applied to realistic vehicular settings. Contr 
astingly, [13] suggested a safe and configurable 
SDN-based VANET routing architecture, however it 
does not involve learning-based or graph-driven 
inference data structures like the GNNs, thereby 
lacking predictability in dynamic circumstances. 
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Moreover, the prevailing ('explicit or implicit') GNN 
models are not designed to be performed on a low-
latency basis, and they are typically impractical to 
be used on resource-constrained RSUs or on edge 
devices. 
 
Gap Analysis 
• The traditional routing protocols are myopic 

and reactive and are not scalable, and they are 
not in real time in their awareness of the 
context. 

• SDN is centrally controlled and the static or 
rule-based routing feature does not learn and 
predict. 

• GNNs are effective in training on 
spatiotemporal graphs, and are hardly used in 
real-time control planes based on SDN. 

• The opportunities of real-time feedback loops 
and mobility-based graph inference in 6G-
VANET routing that can lead to the fully 
potential implementation of the existing hybrid 
techniques are not fully utilized. 

The following paper fills these gaps because it 
proposes a real-time GNN-aided SDN routing 
framework to encode vehicular mobility in 
dynamic graphs, and uses the trained models of 
GNNs to predict best routes. The synergy improves 
the responsiveness, scalability, and performance in 
high-mobility high-density VANET. 
 
3. System Architecture 
The suggested architecture of the system combines 
the synergies of Software-Defined Networking 
(SDN) and Graph Neural Networks (GNNs) to 
provide end-to-end, on-demand routing to high-
mobility Vehicular Ad Hoc Networks (VANETs). 
Where it is composed of three main blocks, which 
include SDN control plane block, the GNN-based 
block of the routing inference, and a mechanism of 
real-time vehicular data flow. Cumulatively, these 
elements facilitate international network 
impression, smart routing forecasts, and 
programmability of circulation control to complete 
communication proficiency in unstable automotive 
circumstances. Figure 1 shows the entire system 
functionality that combines vehicles, RSUs, SDN 
control plane and the mode of routing that is based 
on GNN. 
 
3.1 SDN Control Plane 
And the SDN controller is the brain of the network 
forming decisions. The controller is deployed on 
open-source implementations like Ryu or ONOS 
and has a complete, in-real-time overview over the 
vehicular network by regularly polling state data 
over Roadside Units (RSUs) and mobile edge 
agents. These are the following data points: 
• Live vehicle locations (GPS locations), 
• Travelling speed and direction, 

• Link-layer parameters signal level, packet 
losses and delay. 

Such a global view enables the controller to refine 
the VANET topology and to build a uniform 
representation of the global vehicular state. Unlike 
the distributed routing techniques, the SDN 
architecture has the ability to implement 
centralized policies, Topology changes happen 
smoothly, and routes can be managed pro-actively 
with the help of the OpenFlow-controlled 
forwarding engines. 
 
3.2 GNN-Based Routing Inference Module 
As part of the contextual aware routing, the SDN 
controller contains a Gated Graph Neural Network 
(GGNN) module trained on real-world mobility 
data and synthetic mobility data. The vehicular 
network is represented as the spatiotemporal 
graph, in which: 
A node model vehicle, RSU and the intersections, 
Edges represent the communication paths with a 
dynamic measure like bandwidth, delay, reliability 
and signal-to-noise ratio (SNR). 
The GGNN is based on the past knowledge on the 
mobility traits and time-dependent behavior of a 
path and forecasts the effective routing paths 
among source-destination pairs. This model is 
learned following a composite cost to be 
minimized on the basis of: 
L=α⋅Delay+β⋅HopCount+γ⋅Link Failure Probability 
where α,β,γ are tunable hyperparameters 
optimized during training. 
By inferring path scores in real-time, the GNN 
module supports proactive route selection, 
outperforming static or heuristic-based algorithms 
in rapidly evolving VANET environments. 
 
3.3 Real-Time Data Flow and Decision Pipeline 
The component works in a sensing-computation-
actuation loop, so in Figure 1, the SDN controller 
communicates with RSUs and the GNN module to 
determine real-time adaptive routes. The flow of 
data is in the following way: 
1. Beacon Broadcasting: Periodically, 

Cooperative Awareness Messages (CAMs) 
with positional, velocity and directional 
information are transmitted by vehicles. 

2. RSU Aggregation: The data in the beacon is 
received and aggregated by nearby RSUs and 
this information is relayed to the SDN 
controller via a dedicated backhaul network 

3. Graph Construction: The controller 
dynamically builds a spatiotemporal graph 
thereof called the current network snapshot 
with topology as well as quality-of-service 
metrics. 

4. GNN Inference: Using the constructed graph 
the GGNN calculates the optimal routing 
decisions using learned models. 
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5. Rule Deployment: Output is converted into 
OpenFlow flow rules that are installed on the 
SDN-enable switches or in RSU gateway 
redirecting data packets accordingly. 

The architecture provides real-time flexibility, 
dense traffic scalability and fine-grained QoS 
control, so it is quite suitable to the requirements 
of forthcoming 6G-enabled vehicular 
communications systems. 

 

 
Figure 1. SDN-GNN System Architecture 

 
The architecture describes the interaction among 
RSUs, SDN controllers and GNN-based routing 
intelligence. Cars occasionally broadcast beacon 
messages to RSUs that collect data and send 
messages to SDN controller. Based on such 
information the controller builds a spatiotemporal 
graph and passes it to the GNN module to predict 
the most optimal path to use. The August 2021 
initiative. Resulting flow rules are backed down to 
the data plane to lead vehicle communications in 
real time. 
 
4. METHODOLOGY 
This section outlines the design, training, and 
evaluation strategy of the proposed SDN-GNN-
based adaptive routing system for VANETs. 
 
4.1 Graph Construction 
The vehicular network can be modeled as the 
dynamic spatiotemporal graph Gn=(V,E), where 
nodes V represent vehicles, RSUs and intersections, 
and the edges E are the communication linkages 
which are also weighted by the real behavioral 
parameters, like latency and SNR, and link stability. 
Periodical renewal of graph snapshots is based on 
the telemetry gathered through RSUs and the SDN 
controller. 
 
4.2 GNN Training 
A Gated Graph Neural Network (GGNN) is trained 
on synthetic mobility data from SUMO and link-
layer statistics simulated via Mininet-WiFi. The 
model minimizes a composite loss function: 

L=α⋅Ldelay+β⋅Lhops+γ⋅Lstability 
with hyperparameters tuned empirically. Node and 
edge features include speed, position, and real-
time QoS values. Training is performed using 
TensorFlow with GPU acceleration and early 
stopping to prevent overfitting. 
 
4.3 Evaluation Metrics 
System performance is evaluated under varied 
traffic loads using: 
 Packet Delivery Ratio (PDR): Delivery 

reliability (%). 
 End-to-End Delay: Average communication 

latency (ms). 
 Throughput: Data rate (kbps). 
 Route Stability: Frequency of path changes. 

These metrics benchmark the SDN-GNN system 
against AODV and DSR protocols in high-mobility 
urban scenarios. 
 
5. RESULTS AND DISCUSSION 
The suggested SDN-GNN dynamic routing system is 
contrasted to the reference protocols AODV and 
DSR, under different examinations of traffic density 
and mobility traits on actual urban-useful 
networks, simulated through SUMI and Mininet 
WiFi. 
 
5.1 Performance Gains 
Table 1 summarizes the comparative results for 
core routing metrics: 
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Table 1. Comparative Performance Metrics of Routing Protocols in VANETs 
Metric AODV DSR SDN-GNN 

(Proposed) 
PDR (%) 78 81 93 
Delay (ms) 230 205 127 
Throughput (kbps) 180 205 295 

 
SDN-GNN approach leads to the addition of 15-
20% to the Packet Delivery Ratio (PDR) and a ~ 
45% improvement in end-to-end PDR over 
traditional protocols. The increased throughput is 
the consequence of more efficient use of 
bandwidths, which was possible thanks to the 
context-aware path choice in GNN and the whole-
network management as made possible by SDN. 

These outcomes are proof of usefulness of 
integrating predictive routing intelligence and 
centralized flow control mainly in high-density and 
high mobility VANET environments. Figure 2, A bar 
graph that depicts the grouping of PDR, Delay, and 
Throughput of AODV, DSR and the proposed SDN-
GNN method. 

 

 
Figure 2. Comparative Performance of Routing Protocols 

 
Figure 2: Comparative bar chart illustrating PDR, 
Delay, and Throughput across AODV, DSR, and the 
proposed SDN-GNN framework 
 
5.2 Scalability 
The system is efficiently scalable to more than 200 
vehicular nodes and the system controller 
overhead is kept minimal. GNN inference enables 
the SDN controller to calculate the routing paths a 
priori; it limits the need to repeatedly recompute 

these paths, and hence the load in control-plane 
signaling is significantly low. This is unlike the 
reactive protocols which trigger expensive route 
advertisements under dynamic environment. Also, 
the controller infrastructure can maintain a high 
throughput and low response time because 
OpenFlow rules updates are minimized by the 
consistency of GNN-predicted paths in an 
increasing number of vehicular nodes, like shown 
in Figure 3. 

 

 
Figure 3. Packet Delivery Ratio vs. Node Count 
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which compares how PDR varies with network size 
for AODV, DSR, and the proposed SDN-GNN 
approach. It clearly shows that SDN-GNN 
maintains higher delivery efficiency as the network 
scales. 
 
5.3 Limitations 
Along with the experienced performance 
improvements, the major limitation could be 
associated with GNN inference latency at peak re-
routing time. With the increase in the density of 
vehicular graphs these inference delays may affect 
time-sensitivity of decisions. This bottleneck may 
be rectified by: 
• suspenseful clouding in the RSUs with edge AI 

accelerators, 
• Pruning (model), or quantization of models to 

achieve a lower computational complexity, 
• Incremental re-training to prevent 

reprocessing of the entire graph. 
Also, deploying TinyML frameworks or lighter-
weight, quantized implementations of GNNs can 
provide an attractive pathway to deploying 
inference to resource-limited edge devices like 
RSUs and embedded controllers. 
The following are the proposed future directions 
by these enhancements that allow real-time 
inferences at scale. 
 
6. CONCLUSION 
The combination of Graph Neural Networks 
(GNNs) and Software-Defined Networking (SDN) 
would provide a dynamic and scalable proposal of 
intelligent routing depending on the dynamic 
features of Vehicle Ad Hoc Networks (VANETs). The 
proposed framework provides proactive and 
context-sensitive route optimization based on the 
structural and temporal characteristics of 
vehicular communication graph enabling fast 
response to high rates of the topology change and 
to mobility-caused disruptions. Combining GNN-
based predictive inference with centralized SDN 
model, it is possible to guarantee better delivery of 
certain packets, decrease latency, and improve 
throughput, even achieving it in dense urban traffic 
scenarios. Those features render the architecture 
very well-suited in the implementation of 
emerging use cases in 6G-enabled intelligent 
transportation systems (ITS), where real-time 
decision-making, communication reliability and 
road safety are key operation needs. In addition to 
it, the lightweight and modular nature of the 
framework makes it suitable to be integrated into 
edge-enabled 6G V2X platforms to provide the 
capabilities of decentralized inference and cross-
layer flexibility in infrastructures of the future 
mobility. 
 
 

7. Future Work 
Although the SDN-GNN framework that 
implements the proposed design shows promising 
results regarding routing efficiency and scalability, 
there are a few extensions that can enhance the 
framework in increasing its applicability in 
practice concerning the vehicular networks: 
• GNN Inference Modules Deployed to Edge: To 

overcome the inference latency as well as 
bottlenecks in centralized processing, future 
deployments can investigate deploying 
lightweight GNN models to the edge, especially 
on RSUs or MEC (Multi-access Edge Computing) 
nodes. This method allows low communication 
overhead real-time inference and distributed 
intelligence in VANETs. 

• Multi-Hop V2X Communication Support: The 
existing architecture is designed to enhance the 
single-hop paths mainly. Future extensions will 
also adopt multi-hop V2V and V2I relaying to 
improve both network coverage and network 
resiliency in sparse urban or rural deployments 
where direct connection with RSU may be 
discontinuous. 

• Trust and Security Mechanisms Composition: 
Since VANETs are susceptible to spoofing, 
misrouting, and data tampering, it is necessary 
to integrate the trust-knowing routing policies 
and famine cryptographic protocols within the 
SDN-GNN framework. This incorporates using 
reputation scores, blockchain-optimized path 
verification or zero-trust architectures to be 
able to have the safe and reliable propagation of 
information amid adversaries on the wide area 
network. 

Such directions are meant to bring the framework 
a step closer to the needs of next-generation 
intelligent vehicular forms of communication 
about performance, security, and decentralization. 
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