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 Cyber-Physical Systems (CPS) constitute a group of highly demanding 
infrastructural systems, which closely couple the computational 
algorithms with physical dynamics, with a challenging real-time control. 
As CPS technology continues to spread to fields of autonomous 
transportation, automation in industries, and medical equipment, the 
attack area has become significantly larger, therefore, leaving systems 
vulnerable to myriads of cyber attacks. The traditional RealTime 
Operating Systems (RTOS) are focused on the need to fulfill the timing 
and scheduling assurances and do not have intrinsic security 
enforcement procedures. In this paper, we suggest Security-Aware Real-
Time Operating System (S-RTOS) that synthesizes security enforcement 
within the RTOS kernel without compromising temporal determinism 
necessary to time-critical CPS task apps. S-RTOS architecture presents a 
secure task scheduler based on time partitioned execution, light-weight 
encryption of task context and inter-process communication and a 
Trusted Execution Time Monitor (TETM) to detect anomalies at 
runtime. It includes also hardware-enforced control-flow integrity and a 
real-time intrusion detection module using a one-class support vector 
machine to train on system behavior metrics. The given components 
work in harmony to resist time-based side-channel attack, unauthorized 
change of tasks, and attempted control hijacking. The system is tested 
on ARM Cortex-M4 embedded board using automotive ECU and an 
industrial robot arm representative CPS workloads. Experimental 
findings indicate that the proposed S-RTOS has a latency overhead less 
than 7.2 % as compared to the baseline RTOS implementations with a 
task degree of attack detection rate of 98.7 %. Additionally, the memory 
and CPU overloads are at an acceptable level of implementation into 
embedded systems. The presented work demonstrates the viability and 
relevance of the inclusion of native security functionality in RTOS 
architecture, as a fast track to secure CPS implementations in hostile 
locations. The suggested S-RTOS provides the comprehensive and 
elastic approach that would allow both safeguarding and security of the 
next generation of the embedded systems without sacrificing any real-
time performance. 
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1. INTRODUCTION 
Cyber-Physical Systems (CPS) have become the 
foundation of what defines contemporary critical 
infrastructure, offering us an opportunity to build 
a full-blown connection between computational 
intelligence and physical processes without any 
type of barrier or interruption involved. Self-
driving cars, airplanes, automation in industry, 
power grid management, healthcare products, and 
intelligent transportation are just some of the 
areas that are becoming more heavily dependent 
on CPS to provide highly reliable real-time 
responses. Such systems are embedded computer-
based systems that analyze sensory inputs, 
autonomously decide, as well as drive the output 

actions, including in tight time limits. These 
embedded systems usually use Real-Time 
Operating Systems (RTOS) to achieve predictable 
and timely behavior (deterministic task 
scheduling, interrupt scheduling and time-bound 
control of resources). 
The interconnected fabric of architecture is 
however growing in CPS, cloud platforms, external 
networks, and IoT interfaces owing to the 
increased interconnectivity that has significantly 
increased their attack surface. The malicious 
actors have begun to use task scheduling, memory, 
and real-time communication vulnerabilities to 
derive cyber-attacks against a system, such as 
timing side-channel exploitation, control-flow 
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hijacking, task masquerading, and data-tampering. 
Recent and increasing examples of real-world 
events have shown that minimal attacks of timing 
behavior, or timing control logic, can result in 
insurmountably poor consequences - anywhere 
between the deactivation of safety systems in 
automobiles, to the shutdown of processes within 
a manufacturing plant.More conventional RTOS 
platforms like FreeRTOS, VxWorks, and RTEMS are 
again better optimized to address performance 
and reliability, but they do not tend to include 

security as a distinct consideration. Although 
outbound security (e.g. hardware firewall or 
intrusion detection systems) can provide partial 
security, it is ineffective against in-kernel threat 
and immediate exploitation, regardless of these 
taking place within the RTOS execution scope. In 
addition, conventional security models are not 
easily embedded in real-time systems since they 
come along with a large overhead in terms of 
resources, unpredictability, and are highly limited. 

 

 
Figure 1. Conceptual Architecture of Security-Aware RTOS in Cyber-Physical Systems 

 
This paper overcomes these difficulties, by 
introducing a Security-Aware Real-Time Operating 
System (S-RTOS), a modified architecture of 
RTOSs, where security mechanisms are built as 
lightweight components that are integrated 
directly into the RTOS kernel, rather than being 
presented as separate applications. The objective 
is to maintain harsh real-time guarantees but deal 
with risks at the task, memory and communication 
levels. Proposed S-RTOS will provide task 
authentication, control-flow integrity, inter-
process secure communication, anomaly detection 
and time-based scheduling especially with regard 
to embedded CPS scenarios. This work is 
developed to fill in the gap between timing 
determinism and security enforcement thus 
making a practical framework of protecting the 
next-generation CPS against the changing cyber 
threats at the expense of real-time performance. 
 
2. LITERATURE REVIEW 
Due to the increased complexity and 
interconnected Cyber-Physical Systems (CPS), 

security in real-time embedded environment has 
become more important. The initial studies 
concentrating on the validation of functional 
correctness and on time predictability of the Real-
Time Operating Systems (RTOS) were devoted to 
the practical area mainly. RTLinux and FreeRTOS 
systems brought deterministic task scheduling and 
very low interrupt latency, good enough in closed-
loop, isolated systems. But these RTOS models are 
inappropriate to respond to the current 
cybersecurity concerns with the explosive growth 
in connected CPS applications. Experiments like 
[1] showed how RTOS Systems were vulnerable to 
timing side-channel attacks, memory corruption 
and control-flow hijacking, which demonstrated an 
urgent necessity to implement integrated security-
aware architectures. 
A major breakthrough in this area has recently 
been the development of formally verified 
microkernels such as seL4 which provide formally 
guaranteed behaviour, including provable memory 
isolation and access control. seL4 has shown that a 
mathematically proven RTOS kernel can 
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substantially reduce the attack surface, but its 
complexity and a lack of support to enable real-
time responsiveness limits its application. At the 
same time, the authors of [2] have been using 
sandboxing methods to isolate untrusted tasks 
implemented lightweight task level containers in 
their embedded systems. Nevertheless, these 
strategies do not provide intrinsic safeguards 
against time-related weaknesses, e.g. malicious 
overrunning tasks or clandestine timing channels. 
Likewise to alleviate resource contention, priority-
aware mechanisms such as Priority Inheritance 
Protocols are priority-based improvements to 
alleviate contention, but not to support code 
integrity or manipulation of dynamic behavior. 
More recent work on SecureWatchdog and RT-
MON target externally based real-time monitoring 
solutions that identify abnormal program 
execution patterns in RTOS based systems. Such 
mechanisms are effective at denoting suspicious 
behavior after execution, however, are outside the 
kernel and add latency and evasibility. Other areas 
of research have proposed memory encryption, 
stack canaries and code authentication routines, 
but most of them present non-trivial performance 
costs and are not available within the scheduler in 
a finely-grained manner. Thus, a new body of 
literature implies that a security model embedded 
in the kernel should be adopted to enable the 
detection and responsive response quickly with no 
loss of real-time determinism. This research paper 
extends these results namely through suggesting a 
unified, kernel-consistent S-RTOS structure that 
covers both timing and control-flow safety in time-
sensitive CPS contexts. 
 
3. METHODOLOGY 
3.1 RTOS Kernel Security Extensions 
An apt way to describe our state is by modifying an 
existing conventional Real-Time Operating System 
(RTOS) to achieve security-level awareness and 
produced derivation that finds application in 
Cyber-Physical Systems (CPS). This state is 
achieved by contributing specific alterations into 
the FreeRTOS kernel. These extensions are of a 
kernel level designed to provide integrity, 
confidentiality, and predictable timing of task 
execution on the one hand, and a reasonable level 
of computational overhead otherwise (especially 
that embedded systems are going to use them). 
The next security services were incorporated: 
 
Secure Task Initialization 
The fundamental part of the work of the RTOS is 
the creation and handling of the tasks, which will 
handle time-sensitive operations. In an ordinary 
RTOS, task identity is often by simple numeric 
numbers or memory pointers, which are prone to 
spoofing or manipulations by evil codes. To 

counter this, we place a Secure Task Initialization 
in which each and every task created is attached 
with the cryptographic identifier (CID) during its 
creation time. This CID is calculated by taking the 
hash of a mixture of the binary code of the task, 
initialization parameters and timestamp with SHA-
3. The hash is a sort of fingerprint used to prove 
the integrity of tasks they originated and to 
guarantee that tasks cannot be tampered with. 
When switching contexts or doing inter-process 
communication, the RTOS can validate the CID 
prior to giving the task a chance to run or 
accessing the message, thus avoiding 
impersonation attacks or task-injection attacks. 
 
Temporal Enforcement Unit (TEU) 
Pre-determined time is a fundamental feature of 
RTOS behavior, it is also a feature that timing 
attacks can be used or resource starvation can be 
performed. To protect ourselves against those 
threats, we support a Temporal Enforcement Unit 
(TEU) in the kernel. What the TEU defines is a so-
called timing contract on each task, which contains 
some parameters such as Worst-Case Execution 
Time (WCET), period, and deadline. At run-time, 
the execution time of each task is measured using a 
special hardware hardware timer or by a high 
resolution clock. In case a task is taking longer 
than its WCET or exceeds its period constraint, the 
TEU will cause a kernel interrupt to stop the task 
and alert a security anomaly. This helps to avoid 
evil deeds which can engage in denial-of-service 
(DoS) attacks by hogging resources on the CPU and 
guides to observation of time demands required in 
the safety of systems. 
 
Kernel-Level Data Protection 
Traditional RTOS Applications In a traditional 
RTOS environment the task memory areas are 
typically dynamically allocated and poorly 
safeguarded thus subject to buffer overrun, 
unauthorized memory access or manipulation. In 
order to increase data privacy and data security, 
our proposed model promotes Kernel-Level Data 
Protection. Every task receives a dedicated and 
isolation memory region, which is imposed with a 
Memory Protection Unit (MPU). Access to such 
regions is regulated through privilege and an 
attempt to access a region without privileges leads 
to a memory fault, which the RTOS securely 
manages. In order to prevent further data leak or 
interception (e.g. in-between the tasks 
communication, use of sensitive input data, e.g. 
control commands, sensor data) all data buffers 
are encrypted using lightweight block ciphers such 
as PRESENT or SPECK. These ciphers are selected 
such that they consume low level of computational 
resource, hence can be used in microcontroller 
based systems. This architecture will ensure that 
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when an attacker gets access to low server levels, the most important data will be unreadable. 
 

 
Figure 2. Security Extensions in S-RTOS Kernel for Cyber-Physical Systems 

 
3.2 Secure Task Scheduling Mechanism 
The scheduler, the main unit of the real-time 
embedded systems, is the one that decides the 
protocol and time of the tasks execution. Fixed or 
dynamic priorities Traditional RTOS schedulers 
seek a deterministic behavior. Nevertheless, with 
the advent of Cyber-Physical Systems (CPS), 
schedulers would turn out to be such security 
precious resources as well due to the possibility of 
defeating them through timing inference, privilege 
levels, or control hijacking assaults. To overcome 
these risks, we would propose a Security-Aware 
RTOS (S-RTOS) that would insert a secure 
scheduling scheme that is multi-layered in nature 
since it would provide temporal predictabilities, as 
well as, runtime behavior validations. 
 
Priority-Based Round Robin with Time 
Partitioning 
Our scheduler is based on a hybrid model which 
incorporates priority-based scheduling scheme 
and time-atomized segments that run tasks. 
Though priority based scheduling makes sure the 
vital tasks achieve their respective deadline, 
inclusion of time partitions makes the tasks not to 
interfere with the execution timing of other tasks. 
Every task would be allocated deterministic start 
window and the unit in charge of time 
enforcement known as Temporal Enforcement 
Unit (TEU) would be observing the time taken by 
the task to comply with its Worst-Case Execution 
Time (WCET). In case an activity tries to encroach 
on its assigned slot, the TEU uses hardware 
interrupt to violently end or hang the activity. This 
resource partitioning can have a very profound 
effect of defending against timing side-channel 
attacks, whereby an attack task tries to guess the 
sensitive information by monitoring the intense 
pattern of the other prior tasks using the CPU. 
 

Task Authorization Check (TAC) 
We use a Task Authorization Check (hereinafter 
TAC) as an enforcement mechanism of pre-
dispatch validation carried out to make sure that 
the rogue/tampered tasks that have been 
scheduled in the system do not run. A 
cryptosystem of the data loaded into the PC, or 
registered on it, a digitally signed process is 
carried out; basically, Elliptic Curve Cryptography 
(ECC-P256), a lightweight strong asymmetric 
cryptographic protocol is well suited to embedded 
systems. TAC module checks the digital signature 
of executable tasks with a pre-stored public key 
certificate before the scheduler decides whether it 
needs to be executed or not. Verification failure or 
a change in signature / non-realization of 
signature results in refusing to fulfill the task. This 
will maintain that purely authenticated and non-
tampered code is executed on the system thus 
preventing code injection, spoofing of tasks, and 
firmware tampering. 
 
Control-Flow Integrity (CFI) Module 
Control-flow hijacking (e.g., a return-oriented 
programming (ROP) or a jump-oriented 
programming (JOP) attack) is one of the most 
potentially disastrous runtime threats on an 
embedded CPS. They utilise the available 
executable code to gain control flow but do not 
inject any new code and avoid the traditional 
measures based on signatures. So as to overcome 
such attacks, our scheduler is incorporated with a 
Control-Flow Integrity (CFI) Module which 
determines expected return paths. 
This is done by use of a shadow stack- a guarded 
memory structure based on hardware which holds 
the return addresses during tasks. In contrast to 
standard stack where the stack can be 
compromised with buffer overflows, the shadow 
stack is available to the kernel only on supervisor 
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mode. Each of the return instructions are tested 
against the entry on the shadow stack during 
runtime. An interrupt of a mis-match- type causes 
an immediately kernel trap and that task is either 
suspended, isolated, or terminated. The proactive 
nature of this solution will keep the task flows of 
control within legal limits, enhancing runtime 
integrity. 
In unison, these three mechanisms, namely, time-
partitioned scheduling, pre-execution 

authorization, and runtime control-flow 
monitoring, embody a robust scheduling 
framework, which is devoid of unauthorized 
access, support rigorous timing contracts, and 
secure execution. The outcome is a scheduler that 
can meet real-time deadlines and, can also serve as 
a first-line defense against timing-based as well as 
logic based attacks in mission-critical CPS 
environment. 

 

 
Figure 3. Multi-Layer Secure Task Scheduling in S-RTOS 

 
3.3 Trusted Execution Monitoring and 
Communication Security 
In Cyber-Physical Systems (CPS), task performed 
incorrectly or tampered messages may cause 
physical harm or system breach may occur, so 
secure real time communications and trusted task 
execution is necessary. The classical RTOS 
architectures simply do not offer much verification 
of the run-time behaviour and no inherent 
promises on the validity of the messages or their 
correctness. In a bid to alleviate this gaping hole, 
the proposed Security-Aware RTOS (S-RTOS) 
proposes an end-to-end security monitoring and 
communication scheme that incorporates three 
major components as the Trusted Execution Time 
Monitor (TETM), Secure Inter-Process 
Communication (IPC)Layer, and Real-Time 
Anomaly Detection Engine. 
 
Trusted Execution Time Monitor (TETM) 
The Trusted Execution Time Monitor (TETM) is a 
special purpose hardware-aided component of the 
RTOS software implemented in FPGA fabric to 
allow real-time monitoring of task execution 
behavior. On the secure boot, the temporal profile 
of every task, with parameters of execution time, 
invocation frequency, and behavior signatures 
(unique to a task) is captured and permanently 
stored in the non-volatile memory. TETM uses high 
resolution cycle counters and trace buffers to 

compare current task behavior with these 
reference profiles, at runtime. The deviation may 
be a delay of execution, unusualzation of 
instruction sequence, or unorthodox-I/O behavior 
and the deviation is considered a pointer to 
possible threats, such as code modification, 
memory injection, or job diversion. The TETM 
causes a kernel-level interrupt when a violation is 
detected, and a mitigation handler is run. 
Depending on the magnitude of the anomaly, this 
handler takes action dynamically, by isolating the 
task, logging a security event, or going for a 
controlled restart. Using this mechanism, TETM 
provides a crucial mechanism in disaster recovery 
with ensuring trusted execution of time-critical 
Cyber-Physical Systems. 
 
Secure IPC Layer 
To support time-sensitive data sharing real-time 
embedded systems depend on inter-task 
communication toolsets like exchange queues, 
mailbox, and joint memory structures to facilitate 
the synchronization event. But without on-board 
cryptographic protection, the channels are 
exposed to message spoofing, replay, and 
unauthorized access to control messages a 
situation which becomes critical in Cyber-Physical 
Systems (CPS). The proposed S-RTOS overcomes 
such weaknesses by adding a Secure Inter-Process 
Communication (IPC) layer which offers more 
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integrity and authenticity of the messages 
exchanged. All messages are addended with a 
Message Authentication Code (MAC) which is 
calculated by a shared secret key between the 
tasks communicating with each other to allow the 
receiving party to authenticate the source as well 
as the contents of the message prior to acting on it. 
Besides, each message contains a trusted 
timestamp, which is used to prevent a replay 
attack, in addition to a unique nonce. These 
elements are even verified with a secure system 
clock and nonce cache so that discarded messages 
or duplicated messages are not accepted. This 2-
layer solution remarkably enhances the 
trustworthiness of communication in real-time 
protection that has considerable computing 
burden, which is vital in sustaining the 
responsiveness and reliability of CPS applications. 
 
Real-Time Anomaly Detection 
S-RTOS supports an anomaly detection engine 
based on lightweight machine learning to improve 
resistance to unknown (zero-day) threats that do 
exploit traditional security offerings based on 
static and rule-based security. This engine runs 
alongside the RTOS scheduler and is constructed 

on a one-class Support Vector Machine (SVM) 
model that results only based on legitimate 
execution behavior in the course of the learning 
process of the system. The model tracks some 
important run-time properties such as trend in the 
usage of the central processor, stack pointer 
dynamics, input-output operations, proportion of 
context switches, and the frequency of task 
communication. The system also keeps tracking 
these parameters on the running tasks 
continuously and raises the red flags on the 
deviation where they exceed the learned bounds of 
behaviors data as a possible anomaly. When an 
occurrence of such an anomaly is identified an 
anomaly handler (a Mitigation Handler) is invoked 
and applied immediately to perform preconfigured 
countermeasures, which may include isolating the 
affected tasks in a secure sandbox and logging 
activities, to suspend the tasks or cause the system 
to rollback, and, in some cases, cause a secure 
reboot. This real time detection framework 
leverages on the previous behavior and offers an 
extra security accessed to S-RTOS to proactively 
detect and react to advance or other devious 
attacks that might be missed by static systems. 

 
Table 1. Components of Runtime Security and Their Functions in S-RTOS 

Component Function Techniques Used Threats Mitigated 
Trusted Execution 
Time Monitor (TETM) 

Validates runtime 
timing and behavior 

FPGA, Cycle 
Counters, Trace 
Buffers 

Task hijack, DoS, Code 
Injection 

Secure IPC Layer Ensures message 
integrity and 
authenticity 

MAC, Timestamp, 
Nonce 

Replay attacks, 
spoofing, data 
tampering 

Real-Time Anomaly 
Detection 

Detects behavior 
deviation during 
execution 

One-Class SVM Zero-day attacks, 
stealthy runtime 
behavior 

 

 
Figure 4. Runtime Monitoring and Communication Security Framework in Security-Aware RTOS (S-

RTOS). 
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4. Security Mechanisms 
The security mechanisms suggested in the 
Security-Aware RTOS (S-RTOS) architecture 
comprise a multi-level defense approach that 
focuses on real-time embedded systems and 
operate under harsh requirements with respect to 
reliability and safety. Time Partitioning involves 
cross-task timing avoiding through the use of fixed 
slot round-robin scheduling policy, avoiding this 
by strict time partitioning of tasks and avoiding 
malicious and erroneous task monopolization of 
processor time. Control-Flow Integrity (CFI) is a 
type of protection that manages hijacking of 
control flows during runtime and Return-Oriented 
Programming (ROP) attacks where it depends on 
hardware implemented shadow stack to validate 
the returns addresses and to execute the legitimate 
control-flow transitions as a means to counter the 
exploits of code reuse attacks. The Secure Boot 

uses a Trusted Platform Module (TPM) based on a 
chain-of-trust hardware-backed authentication 
that can ensure the integrity and authenticity of 
every software component, including the boot 
loader, the operating system kernel, etc., before 
getting executed, thus eliminating the possibility of 
rootkits and boot-time compromise. More so, 
Intrusion Detection Unit (IDU) is integrated, which 
actively performs system behaviour monitoring 
based on a lightweight anomaly detection model 
with Support Vector Machine (SVM). This model 
uses runtime attributes like CPU utilization, use of 
the memory access and context switches to 
identify deviation of behavior that reflects zero-
day attacks or abuse of the system. Taken together, 
they provide high levels of assurance against 
existing and new threats by imposing strong 
initialization, execution flow integrity, temporal 
isolation and even smarter surveillance at runtime. 

 
Table 2.Integrated Security Mechanisms in S-RTOS with Corresponding Threats, Techniques, and 

Architectural Layers. 
Security 
Mechanism 

Threats Addressed Technique Used Layer 

Time Partitioning Cross-task timing 
interference 

Fixed slot round-robin 
scheduling 

Scheduler/Task 
Isolation 

Control-Flow 
Integrity (CFI) 

Runtime hijacking, 
ROP attacks 

Hardware-enforced shadow 
stack 

Execution Flow 
Control 

Secure Boot Kernel tampering, 
boot-time 
compromise 

TPM-based Chain of Trust 
validation 

Boot/Initialization 

Intrusion 
Detection Unit 

Behavioral anomalies, 
zero-day threats 

SVM-based runtime anomaly 
detection (CPU, context 
switches) 

Runtime Monitoring 

 
5. Case Study & Implementation 
The Security-Aware RTOS (S-RTOS) proposed was 
practically demonstrated using a dual-case-study 
implementation of the package on an ARM Cortex-
M4- based embedded board, including two cyber-
physical systems exemplars, an industrial robotic 
arm, and a simulated vehicular Electronic Control 
Unit (ECU). The performance was achieved in the 
following manner, first porting the baseline 
FreeRTOS kernel to the new hardware platform, 
and integrating the S-RTOS modules, the Trusted 
Execution-Time Monitoring (TETM), the Secure 
IPC Layer, and the Anomaly Detection Engine. In 
the case of industrial robotic arm, joint actuation, 
and sensor feedback are used to perform the real 
time motion control tasks that were adversarially 
monitored in terms of timing and control-flow 
perturbations in order to assess the performance 
of the TETM and anomaly detectors. In vehicular 
ECU simulation, known time-sensitive functions 

were brake control and engine diagnostics and 
they were injected with communication tampering 
and behavioral deviations to test message replay 
and spoofing and control-flow violation detection 
capabilities of the system. Important performance 
values have been measured, including task 
response time, where S-RTOS continued their 
deterministic scheduling with little to no jitter; 
security event detection rate, where S-RTOS 
reliably detection control-flow and behavioral 
anomalies that were missed by the baseline RTOS, 
and CPU overhead, where the extra modules added 
between 7 and 10 percent overhead, which is 
acceptably low in embedded safety-critical 
systems. This integration proved that the 
suggested security extensions can highly emulate 
system resilience and real-time performance and 
thus S-RTOS is currently feasible and scalable in 
securing embedded programs in the industrial and 
automotive sectors. 
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Figure 5.Testbed Deployment Diagram Illustrating S-RTOS Implementation on ARM Cortex-M4 for 

Robotic Arm and Vehicular ECU Applications. 
 
6. RESULTS AND DISCUSSION 
The experimental assessment involved a 
comparative stature of the baseline FreeRTOS and 
the optimized Security-Aware RTOS (S-RTOS) in 
three important performance indicators of average 
task response time, attack detection rate and CPU 
overhead. The average time that a task took to 
respond to a given request under FreeRTOS was 
found to be 1.4 milliseconds with S-RTOS reporting 
an insignificant addition of 1.52 milliseconds. The 
low increment of about 8.5 percent indicates that, 
despite the embedding of several runtime security 
features, including Trusted Execution-Time 
Monitoring, Secure IPC, and an Anomaly Detection 

Engine, S-RTOS preserves high responsiveness that 
renders it as well as relevant to latency-sensitive 
applications such as robotic control and vehicular 
ECUs. The CPU overhead increased in subsequent 
CPU time was 2.4 percent in FreeRTOS to 7.2 
percent in S-RTOS and this was mainly caused by 
new runtime monitoring and security verification 
operations. Even then this is not significant enough 
to cause problems to embedded systems, 
particularly in safety critical areas where the 
advantage of having security far outweighs the 
marginally higher costs in terms of computation 
power. 

 

 
Figure 6.Performance Comparison between FreeRTOS and S-RTOS in Terms of Response Time, Detection 

Rate, and CPU Overhead. 
 
One of the benefits of S-RTOS that is worth 
mentioning is an attack detection rate 98.7% is 
considered impressive. In contrast to FreeRTOS, 
where no unique security features are guaranteed 
and no possibility to detect whether control-flow 
has been modified at runtime or whether inter-

process communications exist beyond any 
permission to so, S-RTOS actively detects instances 
of these aberrations and raises flags. A lightweight 
SVM-based Intrusion Detection Unit and 
hardware-assisted control flow tracking supplies 
the detection. All these findings confirm the 



    87 Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

Ashraf R Shoeib et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems 

 

 
 

effectiveness of the suggested design to defend 
itself against threats such as timing interference, 
ROP-based hijacking, and unauthorized message 
injection or replay. Such a high detection rate, 
paired with insignificant effect on task latency, can 
be considered a good indicator of a successful 
compromise between the schedulability and 
security, which makes S-RTOS a trustworthy 
option to be used to secure next-generation cyber-
physical systems. 
Nevertheless, in as far as these results confirm the 
efficiency of S-RTOS when running under nominal 
loads and carrying single-threaded tasks, some 
constraints still exist. The performance of 
managing large scale system load or loaded 
multithreaded systems is one of the open 
challenges wherein the sharing of resources and 

resource contention can add complexity in 
scheduling and false positive anomalies. The main 
focus in future work should be to investigate 
adaptive mitigation strategies in dynamic 
workloads that can distinguish the benign 
deviations and actual threats. Also, further 
improvement can be expected by considering 
Hardware acceleration or offloading some 
components of the security verification pipeline to 
reduce the load on the CPU and increase 
scalability. In sum, the case study proves that S-
RTOS can provide an effective basis of secure real-
time computing, but still its use in industrial and 
automotive applications operating on industrial 
scale might be improved upon with respect to 
optimizations of the resources-constrained 
multitasking computing environment. 

 
Table 3.Comparison of FreeRTOS and S-RTOS Across Key Performance Metrics. 

Performance Metric FreeRTOS S-RTOS (Proposed) Observation 
Avg. Task Response Time 1.4 ms 1.52 ms Slight increase (~8.5%) due to 

added security mechanisms 
Attack Detection Rate – 98.7% High detection accuracy using 

SVM and control-flow monitoring 
CPU Overhead 2.4% 7.2% Additional runtime cost for 

monitoring and validation 
Security Mechanisms 
Present 

None TETM, Secure IPC, IDU S-RTOS integrates security 
features not present in FreeRTOS 

System Behavior Under 
Attack 

No 
detection 

Proactive anomaly 
detection 

S-RTOS detects and mitigates 
timing, control, and 
communication-based attacks 

Real-Time Suitability High High S-RTOS maintains real-time 
performance with minor latency 
trade-off 

 
7. CONCLUSION 
Finally, this piece of work has proposed S-RTOS: a 
secure real-time operating system tailored to 
Cyber-Physical Systems (CPS) which have security 
features embedded into the RTOS kernel by using 
lightweight but powerful security functionalities. 
By integrating security switch features like 
Trusted Execution-Time Monitoring (TETM), 
Secure IPC Layer and anomaly Detection Engine, S-
RTOS proves itself to be successful in filling the 
divide between determinism in the execution of 
tasks and security in the rationale functionality. 
The practical trials on a platform based on ARM 
Cortex-M4 confirmed that S-RTOS has close-to-
real-time performance but has very little 
overheads as the attack detection succeeded in 
98.7 percent of attacks instances when both 
industrial and vehicular CPS were used. The 
results indicate the viability and the practicability 
of incorporating security controls intrinsically into 
low-resources embedded systems. Notably, S-
RTOS also supports proactive mitigation of threats 
without adversely impacting the responsiveness of 
the system which is another key requirement of 

the deployment of mission-critical CPS. Future 
work will be on the formal verification of security 
properties in the kernel, how S-RTOS can be 
adapted to work with heterogeneous and 
distributed CPS networks, allowing greater use in 
applications like autonomous systems, smart 
infrastructure, and industrial IoT. 
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