Electronics, Communications, and Computing Summit

Vol. 2, No. 3, Jul - Sep 2024, pp. 79-88

ISSN: 3107-8222, DOI: https://doi.org/10.17051/ECC/02.03.10

Security-Aware RTOS for Time-Critical Cyber-Physical

Systems

Mrunal Salwadkar

Department Of Electrical And Electronics Engineering, Kalinga University, Raipur, India.
Email: mrunal.salwadkar@kalingauniversity.ac.in

Article Info

ABSTRACT

Article history:

Received : 20.07.2024
Revised :22.08.2024
Accepted :24.09.2024

Keywords:

Embedded Security,
Time-Critical Systems,

Task Scheduling,

Trusted Execution Environment
(TEE),

Temporal Isolation,
Lightweight Cryptography,
Intrusion Detection,

Secure Kernel Design,
Control-Flow Integrity,
Embedded System Security,
Edge Computing,
Hardware-Software Co-Design,
Anomaly Detection in RTOS.

Cyber-Physical Systems (CPS) constitute a group of highly demanding
infrastructural systems, which closely couple the computational
algorithms with physical dynamics, with a challenging real-time control.
As CPS technology continues to spread to fields of autonomous
transportation, automation in industries, and medical equipment, the
attack area has become significantly larger, therefore, leaving systems
vulnerable to myriads of cyber attacks. The traditional RealTime
Operating Systems (RTOS) are focused on the need to fulfill the timing
and scheduling assurances and do not have intrinsic security
enforcement procedures. In this paper, we suggest Security-Aware Real-
Time Operating System (S-RTOS) that synthesizes security enforcement
within the RTOS kernel without compromising temporal determinism
necessary to time-critical CPS task apps. S-RTOS architecture presents a
secure task scheduler based on time partitioned execution, light-weight
encryption of task context and inter-process communication and a
Trusted Execution Time Monitor (TETM) to detect anomalies at
runtime. It includes also hardware-enforced control-flow integrity and a
real-time intrusion detection module using a one-class support vector
machine to train on system behavior metrics. The given components
work in harmony to resist time-based side-channel attack, unauthorized
change of tasks, and attempted control hijacking. The system is tested
on ARM Cortex-M4 embedded board using automotive ECU and an
industrial robot arm representative CPS workloads. Experimental
findings indicate that the proposed S-RTOS has a latency overhead less
than 7.2 % as compared to the baseline RTOS implementations with a
task degree of attack detection rate of 98.7 %. Additionally, the memory
and CPU overloads are at an acceptable level of implementation into
embedded systems. The presented work demonstrates the viability and
relevance of the inclusion of native security functionality in RTOS
architecture, as a fast track to secure CPS implementations in hostile
locations. The suggested S-RTOS provides the comprehensive and
elastic approach that would allow both safeguarding and security of the
next generation of the embedded systems without sacrificing any real-
time performance.

1. INTRODUCTION

autonomously decide, as well as drive the output

Cyber-Physical Systems (CPS) have become the
foundation of what defines contemporary critical
infrastructure, offering us an opportunity to build
a full-blown connection between computational
intelligence and physical processes without any
type of barrier or interruption involved. Self-
driving cars, airplanes, automation in industry,
power grid management, healthcare products, and
intelligent transportation are just some of the
areas that are becoming more heavily dependent
on CPS to provide highly reliable real-time
responses. Such systems are embedded computer-
based systems that analyze sensory inputs,

actions, including in tight time limits. These
embedded systems usually use Real-Time
Operating Systems (RTOS) to achieve predictable
and timely behavior (deterministic task
scheduling, interrupt scheduling and time-bound
control of resources).

The interconnected fabric of architecture is
however growing in CPS, cloud platforms, external
networks, and IoT interfaces owing to the
increased interconnectivity that has significantly
increased their attack surface. The malicious
actors have begun to use task scheduling, memory,
and real-time communication vulnerabilities to

Electronics, Communications, and Computing Summit | Jul - Sep 2024 79

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

derive cyber-attacks against a system, such as
timing side-channel exploitation, control-flow
hijacking, task masquerading, and data-tampering.
Recent and increasing examples of real-world
events have shown that minimal attacks of timing
behavior, or timing control logic, can result in
insurmountably poor consequences - anywhere
between the deactivation of safety systems in
automobiles, to the shutdown of processes within
a manufacturing plant.More conventional RTOS
platforms like FreeRTOS, VxWorks, and RTEMS are
again better optimized to address performance

and reliability, but they do not tend to include
security as a distinct consideration. Although
outbound security (e.g. hardware firewall or
intrusion detection systems) can provide partial
security, it is ineffective against in-kernel threat
and immediate exploitation, regardless of these
taking place within the RTOS execution scope. In
addition, conventional security models are not
easily embedded in real-time systems since they
come along with a large overhead in terms of
resources, unpredictability, and are highly limited.

Cyber-Physical
Systems

Rising
Connectivrity
and
Cyberattacks

& G
Vl

l

!

Real-Time
Operating System

Security
Mechanismss

!

!

Security-Aware
RTOS

Research Focus:
Bridging Determinism
and Security

Figure 1. Conceptual Architecture of Security-Aware RTOS in Cyber-Physical Systems

This paper overcomes these difficulties, by
introducing a Security-Aware Real-Time Operating
System (S-RTOS), a modified architecture of
RTOSs, where security mechanisms are built as
lightweight components that are integrated
directly into the RTOS kernel, rather than being
presented as separate applications. The objective
is to maintain harsh real-time guarantees but deal
with risks at the task, memory and communication
levels. Proposed S-RTOS will provide task
authentication, control-flow integrity, inter-
process secure communication, anomaly detection
and time-based scheduling especially with regard
to embedded CPS scenarios. This work is
developed to fill in the gap between timing
determinism and security enforcement thus
making a practical framework of protecting the
next-generation CPS against the changing cyber
threats at the expense of real-time performance.

2. LITERATURE REVIEW

Due to the increased complexity and
interconnected Cyber-Physical Systems (CPS),
security in real-time embedded environment has
become more important. The initial studies

concentrating on the validation of functional
correctness and on time predictability of the Real-
Time Operating Systems (RTOS) were devoted to
the practical area mainly. RTLinux and FreeRTOS
systems brought deterministic task scheduling and
very low interrupt latency, good enough in closed-
loop, isolated systems. But these RTOS models are
inappropriate to respond to the current
cybersecurity concerns with the explosive growth
in connected CPS applications. Experiments like
[1] showed how RTOS Systems were vulnerable to
timing side-channel attacks, memory corruption
and control-flow hijacking, which demonstrated an
urgent necessity to implement integrated security-
aware architectures.

A major breakthrough in this area has recently
been the development of formally verified
microkernels such as seL.4 which provide formally
guaranteed behaviour, including provable memory
isolation and access control. seL4 has shown that a
mathematically proven RTOS Kkernel can
substantially reduce the attack surface, but its
complexity and a lack of support to enable real-
time responsiveness limits its application. At the
same time, the authors of [2] have been using

80 Electronics, Communications, and Computing Summit | Jul - Sep 2024

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

sandboxing methods to isolate untrusted tasks
implemented lightweight task level containers in
their embedded systems. Nevertheless, these
strategies do not provide intrinsic safeguards
against time-related weaknesses, e.g. malicious
overrunning tasks or clandestine timing channels.
Likewise to alleviate resource contention, priority-
aware mechanisms such as Priority Inheritance
Protocols are priority-based improvements to
alleviate contention, but not to support code
integrity or manipulation of dynamic behavior.
More recent work on SecureWatchdog and RT-
MON target externally based real-time monitoring
solutions that identify abnormal program
execution patterns in RTOS based systems. Such
mechanisms are effective at denoting suspicious
behavior after execution, however, are outside the
kernel and add latency and evasibility. Other areas
of research have proposed memory encryption,
stack canaries and code authentication routines,
but most of them present non-trivial performance
costs and are not available within the scheduler in
a finely-grained manner. Thus, a new body of
literature implies that a security model embedded
in the kernel should be adopted to enable the
detection and responsive response quickly with no
loss of real-time determinism. This research paper
extends these results namely through suggesting a
unified, kernel-consistent S-RTOS structure that
covers both timing and control-flow safety in time-
sensitive CPS contexts.

3. METHODOLOGY

3.1 RTOS Kernel Security Extensions

An apt way to describe our state is by modifying an
existing conventional Real-Time Operating System
(RTOS) to achieve security-level awareness and
produced derivation that finds application in
Cyber-Physical Systems (CPS). This state is
achieved by contributing specific alterations into
the FreeRTOS kernel. These extensions are of a
kernel level designed to provide integrity,
confidentiality, and predictable timing of task
execution on the one hand, and a reasonable level
of computational overhead otherwise (especially
that embedded systems are going to use them).
The next security services were incorporated:

Secure Task Initialization

The fundamental part of the work of the RTOS is
the creation and handling of the tasks, which will
handle time-sensitive operations. In an ordinary
RTOS, task identity is often by simple numeric
numbers or memory pointers, which are prone to
spoofing or manipulations by evil codes. To
counter this, we place a Secure Task Initialization
in which each and every task created is attached
with the cryptographic identifier (CID) during its

creation time. This CID is calculated by taking the
hash of a mixture of the binary code of the task,
initialization parameters and timestamp with SHA-
3. The hash is a sort of fingerprint used to prove
the integrity of tasks they originated and to
guarantee that tasks cannot be tampered with.
When switching contexts or doing inter-process
communication, the RTOS can validate the CID
prior to giving the task a chance to run or
accessing the message, thus avoiding
impersonation attacks or task-injection attacks.

Temporal Enforcement Unit (TEU)
Pre-determined time is a fundamental feature of
RTOS behavior, it is also a feature that timing
attacks can be used or resource starvation can be
performed. To protect ourselves against those
threats, we support a Temporal Enforcement Unit
(TEU) in the kernel. What the TEU defines is a so-
called timing contract on each task, which contains
some parameters such as Worst-Case Execution
Time (WCET), period, and deadline. At run-time,
the execution time of each task is measured using a
special hardware hardware timer or by a high
resolution clock. In case a task is taking longer
than its WCET or exceeds its period constraint, the
TEU will cause a kernel interrupt to stop the task
and alert a security anomaly. This helps to avoid
evil deeds which can engage in denial-of-service
(DoS) attacks by hogging resources on the CPU and
guides to observation of time demands required in
the safety of systems.

Kernel-Level Data Protection

Traditional RTOS Applications In a traditional
RTOS environment the task memory areas are
typically dynamically allocated and poorly
safeguarded thus subject to buffer overrun,
unauthorized memory access or manipulation. In
order to increase data privacy and data security,
our proposed model promotes Kernel-Level Data
Protection. Every task receives a dedicated and
isolation memory region, which is imposed with a
Memory Protection Unit (MPU). Access to such
regions is regulated through privilege and an
attempt to access a region without privileges leads
to a memory fault, which the RTOS securely
manages. In order to prevent further data leak or
interception (e.g. in-between the tasks
communication, use of sensitive input data, e.g.
control commands, sensor data) all data buffers
are encrypted using lightweight block ciphers such
as PRESENT or SPECK. These ciphers are selected
such that they consume low level of computational
resource, hence can be used in microcontroller
based systems. This architecture will ensure that
when an attacker gets access to low server levels,
the most important data will be unreadable.

Electronics, Communications, and Computing Summit | Jul - Sep 2024 81

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

Sensor Monitor

Secure Task
Initialization Module

SHA-3 Hashing
CID Generator

Temporal |

> Entorcement Unit ‘
(

———————\

Timer/Clock

[interrupt
——
'd
RTOS Kernel Core MU Eriforee
Encrypted Data
Scheduler Memory Buffer
Manager
PRESENT/SPECK
Encryption
Kernel-Level

Data Protection

Figure 2. Security Extensions in S-RTOS Kernel for Cyber-Physical Systems

3.2 Secure Task Scheduling Mechanism

The scheduler, the main unit of the real-time
embedded systems, is the one that decides the
protocol and time of the tasks execution. Fixed or
dynamic priorities Traditional RTOS schedulers
seek a deterministic behavior. Nevertheless, with
the advent of Cyber-Physical Systems (CPS),
schedulers would turn out to be such security
precious resources as well due to the possibility of
defeating them through timing inference, privilege
levels, or control hijacking assaults. To overcome
these risks, we would propose a Security-Aware
RTOS (S-RTOS) that would insert a secure
scheduling scheme that is multi-layered in nature
since it would provide temporal predictabilities, as
well as, runtime behavior validations.
Priority-Based Round Robin with Time
Partitioning

Our scheduler is based on a hybrid model which
incorporates priority-based scheduling scheme
and time-atomized segments that run tasks.
Though priority based scheduling makes sure the
vital tasks achieve their respective deadline,
inclusion of time partitions makes the tasks not to
interfere with the execution timing of other tasks.
Every task would be allocated deterministic start
window and the unit in charge of time
enforcement known as Temporal Enforcement
Unit (TEU) would be observing the time taken by
the task to comply with its Worst-Case Execution
Time (WCET). In case an activity tries to encroach
on its assigned slot, the TEU uses hardware
interrupt to violently end or hang the activity. This
resource partitioning can have a very profound
effect of defending against timing side-channel
attacks, whereby an attack task tries to guess the
sensitive information by monitoring the intense
pattern of the other prior tasks using the CPU.

Task Authorization Check (TAC)

We use a Task Authorization Check (hereinafter
TAC) as an enforcement mechanism of pre-
dispatch validation carried out to make sure that

the rogue/tampered tasks that have been
scheduled in the system do not run. A
cryptosystem of the data loaded into the PC, or
registered on it, a digitally signed process is
carried out; basically, Elliptic Curve Cryptography
(ECC-P256), a lightweight strong asymmetric
cryptographic protocol is well suited to embedded
systems. TAC module checks the digital signature
of executable tasks with a pre-stored public key
certificate before the scheduler decides whether it
needs to be executed or not. Verification failure or
a change in signature / non-realization of
signature results in refusing to fulfill the task. This
will maintain that purely authenticated and non-
tampered code is executed on the system thus
preventing code injection, spoofing of tasks, and
firmware tampering.

Control-Flow Integrity (CFI) Module
Control-flow hijacking (e.g., a return-oriented
programming (ROP) or a jump-oriented
programming (JOP) attack) is one of the most
potentially disastrous runtime threats on an
embedded CPS. They utilise the available
executable code to gain control flow but do not
inject any new code and avoid the traditional
measures based on signatures. So as to overcome
such attacks, our scheduler is incorporated with a
Control-Flow Integrity (CFI) Module which
determines expected return paths.

This is done by use of a shadow stack- a guarded
memory structure based on hardware which holds
the return addresses during tasks. In contrast to
standard stack where the stack can be
compromised with buffer overflows, the shadow
stack is available to the kernel only on supervisor
mode. Each of the return instructions are tested
against the entry on the shadow stack during
runtime. An interrupt of a mis-match- type causes
an immediately kernel trap and that task is either
suspended, isolated, or terminated. The proactive
nature of this solution will keep the task flows of
control within legal limits, enhancing runtime
integrity.

82 Electronics, Communications, and Computing Summit | Jul - Sep 2024

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

In unison, these three mechanisms, namely, time-

partitioned scheduling, pre-execution
authorization, and runtime control-flow
monitoring, embody a robust scheduling

framework, which is devoid of unauthorized
access, support rigorous timing contracts, and

secure execution. The outcome is a scheduler that
can meet real-time deadlines and, can also serve as
a first-line defense against timing-based as well as
logic based attacks in mission-critical CPS
environment.

Priority-Based
Round Robin
+ Time Partitioniing

Control-Flow Integ-

rity (CFl) Module
Y
Task
Task >| Authorization[| ~ Scheduler Core
Check (TAC)
Digital signature \
Timing parameters Temporal

Enforcement Unit

!

Task executed securely

Figure 3. Multi-Layer Secure Task Scheduling in S-RTOS

3.3 Trusted Execution and
Communication Security

In Cyber-Physical Systems (CPS), task performed
incorrectly or tampered messages may cause
physical harm or system breach may occur, so
secure real time communications and trusted task
execution is necessary. The classical RTOS
architectures simply do not offer much verification
of the run-time behaviour and no inherent
promises on the validity of the messages or their
correctness. In a bid to alleviate this gaping hole,
the proposed Security-Aware RTOS (S-RTOS)
proposes an end-to-end security monitoring and
communication scheme that incorporates three
major components as the Trusted Execution Time
Monitor (TETM), Secure Inter-Process
Communication (IPC)Layer, Real-Time
Anomaly Detection Engine.

Monitoring

and

Trusted Execution Time Monitor (TETM)

The Trusted Execution Time Monitor (TETM) is a
special purpose hardware-aided component of the
RTOS software implemented in FPGA fabric to
allow real-time monitoring of task execution
behavior. On the secure boot, the temporal profile
of every task, with parameters of execution time,
invocation frequency, and behavior signatures
(unique to a task) is captured and permanently
stored in the non-volatile memory. TETM uses high
resolution cycle counters and trace buffers to
compare current task behavior with these
reference profiles, at runtime. The deviation may
be a delay of execution, unusualzation of
instruction sequence, or unorthodox-1/0 behavior

Electronics, Communications, and Computing Summit | Jul - Sep 2024

and the deviation is considered a pointer to
possible threats, such as code modification,
memory injection, or job diversion. The TETM
causes a kernel-level interrupt when a violation is
detected, and a mitigation handler is run.
Depending on the magnitude of the anomaly, this
handler takes action dynamically, by isolating the
task, logging a security event, or going for a
controlled restart. Using this mechanism, TETM
provides a crucial mechanism in disaster recovery
with ensuring trusted execution of time-critical
Cyber-Physical Systems.

Secure IPC Layer

To support time-sensitive data sharing real-time
embedded systems depend on inter-task
communication toolsets like exchange queues,
mailbox, and joint memory structures to facilitate
the synchronization event. But without on-board

cryptographic protection, the channels are
exposed to message spoofing, replay, and
unauthorized access to control messages a

situation which becomes critical in Cyber-Physical
Systems (CPS). The proposed S-RTOS overcomes
such weaknesses by adding a Secure Inter-Process
Communication (IPC) layer which offers more
integrity and authenticity of the messages
exchanged. All messages are addended with a
Message Authentication Code (MAC) which is
calculated by a shared secret key between the
tasks communicating with each other to allow the
receiving party to authenticate the source as well
as the contents of the message prior to acting on it.
Besides, each message contains a trusted

83

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

timestamp, which is used to prevent a replay
attack, in addition to a unique nonce. These
elements are even verified with a secure system
clock and nonce cache so that discarded messages
or duplicated messages are not accepted. This 2-
layer solution remarkably enhances the
trustworthiness of communication in real-time
protection that has considerable computing
burden, which is vital in sustaining the
responsiveness and reliability of CPS applications.

Real-Time Anomaly Detection

S-RTOS supports an anomaly detection engine
based on lightweight machine learning to improve
resistance to unknown (zero-day) threats that do
exploit traditional security offerings based on
static and rule-based security. This engine runs
alongside the RTOS scheduler and is constructed
on a one-class Support Vector Machine (SVM)
model that results only based on legitimate
execution behavior in the course of the learning
process of the system. The model tracks some

important run-time properties such as trend in the
usage of the central processor, stack pointer
dynamics, input-output operations, proportion of
context switches, and the frequency of task
communication. The system also keeps tracking
these parameters on the running tasks
continuously and raises the red flags on the
deviation where they exceed the learned bounds of
behaviors data as a possible anomaly. When an
occurrence of such an anomaly is identified an
anomaly handler (a Mitigation Handler) is invoked
and applied immediately to perform preconfigured
countermeasures, which may include isolating the
affected tasks in a secure sandbox and logging
activities, to suspend the tasks or cause the system
to rollback, and, in some cases, cause a secure
reboot. This real time detection framework
leverages on the previous behavior and offers an
extra security accessed to S-RTOS to proactively
detect and react to advance or other devious
attacks that might be missed by static systems.

Table 1. Components of Runtime Security and Their Functions in S-RTOS

Figure 4. Runtime Monitoring and Communication Security Framework in Security-Aware RTOS (S-

84

RTOS).

Component Function Techniques Used Threats Mitigated
Trusted Execution | Validates runtime | FPGA, Cycle | Task hijack, DoS, Code
Time Monitor (TETM) | timing and behavior Counters, Trace | Injection
Buffers
Secure IPC Layer Ensures message | MAC, Timestamp, | Replay attacks,
integrity and | Nonce spoofing, data
authenticity tampering
Real-Time Anomaly | Detects behavior | One-Class SVM Zero-day attacks,
Detection deviation during stealthy runtime
execution behavior
Secure Boot | Real-Time
Phase " Tasks
Store Baseline
Profiles
' , :
TETM Secure Anomaly Mitigation
Module IPC Layer Detection [Handler
Engine
Monitors; Uses: MAC + Responses:
+ Executiime Timescapp + Input: CPU Log
Time, Nonce Usage, . Isolate
Instruction Ensures: Stack + Rollback
Flow * Message Pointer, + Reboot
Triggers: Authentic:ity | | Context
Niterrupt + « Freshness Switches
Mitigation Output; Task
Handler Flagged or
Sandboxed

Electronics, Communications, and Computing Summit | Jul - Sep 2024

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

4. Security Mechanisms

The security mechanisms suggested in the
Security-Aware RTOS (S-RTOS) architecture
comprise a multi-level defense approach that
focuses on real-time embedded systems and
operate under harsh requirements with respect to
reliability and safety. Time Partitioning involves
cross-task timing avoiding through the use of fixed
slot round-robin scheduling policy, avoiding this
by strict time partitioning of tasks and avoiding
malicious and erroneous task monopolization of
processor time. Control-Flow Integrity (CFI) is a
type of protection that manages hijacking of
control flows during runtime and Return-Oriented
Programming (ROP) attacks where it depends on
hardware implemented shadow stack to validate
the returns addresses and to execute the legitimate
control-flow transitions as a means to counter the
exploits of code reuse attacks. The Secure Boot

uses a Trusted Platform Module (TPM) based on a
chain-of-trust hardware-backed authentication
that can ensure the integrity and authenticity of
every software component, including the boot
loader, the operating system kernel, etc., before
getting executed, thus eliminating the possibility of
rootkits and boot-time compromise. More so,
Intrusion Detection Unit (IDU) is integrated, which
actively performs system behaviour monitoring
based on a lightweight anomaly detection model
with Support Vector Machine (SVM). This model
uses runtime attributes like CPU utilization, use of
the memory access and context switches to
identify deviation of behavior that reflects zero-
day attacks or abuse of the system. Taken together,
they provide high levels of assurance against
existing and new threats by imposing strong
initialization, execution flow integrity, temporal
isolation and even smarter surveillance at runtime.

Table 2.Integrated Security Mechanisms in S-RTOS with Corresponding Threats, Techniques, and
Architectural Layers.

Security Threats Addressed Technique Used Layer
Mechanism
Time Partitioning | Cross-task timing | Fixed slot round-robin | Scheduler/Task
interference scheduling Isolation
Control-Flow Runtime hijacking, | Hardware-enforced shadow | Execution Flow
Integrity (CFI) ROP attacks stack Control
Secure Boot Kernel tampering, | TPM-based Chain of Trust | Boot/Initialization
boot-time validation
compromise
Intrusion Behavioral anomalies, | SVM-based runtime anomaly | Runtime Monitoring
Detection Unit zero-day threats detection (CPU, context
switches)

5. Case Study & Implementation

The Security-Aware RTOS (S-RTOS) proposed was
practically demonstrated using a dual-case-study
implementation of the package on an ARM Cortex-
M4- based embedded board, including two cyber-
physical systems exemplars, an industrial robotic
arm, and a simulated vehicular Electronic Control
Unit (ECU). The performance was achieved in the
following manner, first porting the baseline
FreeRTOS kernel to the new hardware platform,
and integrating the S-RTOS modules, the Trusted
Execution-Time Monitoring (TETM), the Secure
IPC Layer, and the Anomaly Detection Engine. In
the case of industrial robotic arm, joint actuation,
and sensor feedback are used to perform the real
time motion control tasks that were adversarially
monitored in terms of timing and control-flow
perturbations in order to assess the performance
of the TETM and anomaly detectors. In vehicular
ECU simulation, known time-sensitive functions

were brake control and engine diagnostics and
they were injected with communication tampering
and behavioral deviations to test message replay
and spoofing and control-flow violation detection
capabilities of the system. Important performance
values have been measured, including task
response time, where S-RTOS continued their
deterministic scheduling with little to no jitter;
security event detection rate, where S-RTOS
reliably detection control-flow and behavioral
anomalies that were missed by the baseline RTOS,
and CPU overhead, where the extra modules added
between 7 and 10 percent overhead, which is
acceptably low in embedded safety-critical
systems. This integration proved that the
suggested security extensions can highly emulate
system resilience and real-time performance and
thus S-RTOS is currently feasible and scalable in
securing embedded programs in the industrial and
automotive sectors.

Electronics, Communications, and Computing Summit | Jul - Sep 2024 85

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

ARM Cortex-M4

r

\

RTOS Kernel

A 4

A

\

TETM

rSecure IPC Layer‘

IDU

Robotic Arm

Sensors
Actuators

“ | Vehicular ECU

Brake
Diagnostics
Modules

Figure 5.Testbed Deployment Diagram Illustrating S-RTOS Implementation on ARM Cortex-M4 for
Robotic Arm and Vehicular ECU Applications.

6. RESULTS AND DISCUSSION

The experimental assessment involved a
comparative stature of the baseline FreeRTOS and
the optimized Security-Aware RTOS (S-RTOS) in
three important performance indicators of average
task response time, attack detection rate and CPU
overhead. The average time that a task took to
respond to a given request under FreeRTOS was
found to be 1.4 milliseconds with S-RTOS reporting
an insignificant addition of 1.52 milliseconds. The
low increment of about 8.5 percent indicates that,
despite the embedding of several runtime security
features, including Trusted Execution-Time
Monitoring, Secure IPC, and an Anomaly Detection

100

80

60

Values

40

20

Engine, S-RTOS preserves high responsiveness that
renders it as well as relevant to latency-sensitive
applications such as robotic control and vehicular
ECUs. The CPU overhead increased in subsequent
CPU time was 2.4 percent in FreeRTOS to 7.2
percent in S-RTOS and this was mainly caused by
new runtime monitoring and security verification
operations. Even then this is not significant enough
to cause problems to embedded systems,
particularly in safety critical areas where the
advantage of having security far outweighs the
marginally higher costs in terms of computation
power.

B FreeRTOS
mm S-RTOS

e R%\ ad Q’M
ef\’\e
cpu O

Performance Metrics

Figure 6.Performance Comparison between FreeRTOS and S-RTOS in Terms of Response Time, Detection
Rate, and CPU Overhead.

One of the benefits of S-RTOS that is worth
mentioning is an attack detection rate 98.7% is
considered impressive. In contrast to FreeRTOS,
where no unique security features are guaranteed
and no possibility to detect whether control-flow
has been modified at runtime or whether inter-

process communications exist beyond any
permission to so, S-RTOS actively detects instances
of these aberrations and raises flags. A lightweight
SVM-based Intrusion Detection Unit and
hardware-assisted control flow tracking supplies
the detection. All these findings confirm the

86 Electronics, Communications, and Computing Summit | Jul - Sep 2024

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

effectiveness of the suggested design to defend
itself against threats such as timing interference,
ROP-based hijacking, and unauthorized message
injection or replay. Such a high detection rate,
paired with insignificant effect on task latency, can
be considered a good indicator of a successful
compromise between the schedulability and
security, which makes S-RTOS a trustworthy
option to be used to secure next-generation cyber-
physical systems.

Nevertheless, in as far as these results confirm the
efficiency of S-RTOS when running under nominal
loads and carrying single-threaded tasks, some
constraints still exist. The performance of
managing large scale system load or loaded
multithreaded systems is one of the open
challenges wherein the sharing of resources and

resource contention can add complexity in
scheduling and false positive anomalies. The main
focus in future work should be to investigate

adaptive mitigation strategies in dynamic
workloads that can distinguish the benign
deviations and actual threats. Also, further

improvement can be expected by considering
Hardware acceleration or offloading some
components of the security verification pipeline to
reduce the load on the CPU and increase
scalability. In sum, the case study proves that S-
RTOS can provide an effective basis of secure real-
time computing, but still its use in industrial and
automotive applications operating on industrial
scale might be improved upon with respect to
optimizations of the resources-constrained
multitasking computing environment.

Table 3.Comparison of FreeRTOS and S-RTOS Across Key Performance Metrics.

Performance Metric FreeRTOS | S-RTOS (Proposed) Observation
Avg. Task Response Time 1.4 ms 1.52 ms Slight increase (~8.5%) due to
added security mechanisms
Attack Detection Rate - 98.7% High detection accuracy using
SVM and control-flow monitoring
CPU Overhead 2.4% 7.2% Additional runtime cost for
monitoring and validation
Security Mechanisms | None TETM, Secure IPC, IDU S-RTOS integrates security
Present features not present in FreeRTOS
System Behavior Under | No Proactive anomaly | S-RTOS detects and mitigates
Attack detection detection timing, control, and
communication-based attacks
Real-Time Suitability High High S-RTOS maintains real-time
performance with minor latency
trade-off

7. CONCLUSION

Finally, this piece of work has proposed S-RTOS: a
secure real-time operating system tailored to
Cyber-Physical Systems (CPS) which have security
features embedded into the RTOS kernel by using
lightweight but powerful security functionalities.
By integrating security switch features like
Trusted Execution-Time Monitoring (TETM),
Secure IPC Layer and anomaly Detection Engine, S-
RTOS proves itself to be successful in filling the
divide between determinism in the execution of
tasks and security in the rationale functionality.
The practical trials on a platform based on ARM
Cortex-M4 confirmed that S-RTOS has close-to-
real-time performance but has very little
overheads as the attack detection succeeded in
98.7 percent of attacks instances when both
industrial and vehicular CPS were used. The
results indicate the viability and the practicability
of incorporating security controls intrinsically into
low-resources embedded systems. Notably, S-
RTOS also supports proactive mitigation of threats
without adversely impacting the responsiveness of
the system which is another key requirement of

Electronics, Communications, and Computing Summit | Jul

the deployment of mission-critical CPS. Future
work will be on the formal verification of security
properties in the kernel, how S-RTOS can be
adapted to work with heterogeneous and
distributed CPS networks, allowing greater use in
applications like autonomous systems, smart
infrastructure, and industrial IoT.

REFERENCES

[1] Lee, I, & Sokolsky, 0. (2022). Cyber-Physical
Systems: A New Frontier. ACM Transactions
on Embedded Computing Systems, 21(1), 5.

[2] Ahmed, M., et al. (2020). Lightweight Task

Sandboxing for Secure RTOS. [EEE IoT
Journal, 7(6), 4874-4883.
[3] Klein, G. et al. (2014). seL4: Formal

verification of an OS kernel. Communications
of the ACM, 57(7), 107-115.

[4] Wang,], & Kim, H. (2021). SecureWatchdog:
Embedded Runtime Monitoring for CPS. IEEE
Transactions on Industrial Informatics, 17(5),
3250-3259.

- Sep 2024 87

Mrunal Salwadkar et al / Security-Aware RTOS for Time-Critical Cyber-Physical Systems

[5]

[6]

88

Xu, C., & Shen, C. (2019). RT-MON: Real-time
Monitoring of Execution for Embedded RTOS.
IEEE Embedded Systems Letters, 11(2), 47-50.
Kim, M., & Lee, Y. (2022). Memory Safety in
RTOS for Safety-Critical Applications. ACM
Transactions on Cyber-Physical Systems, 6(3),
18.

Zhao, H,, & Yu, T. (2021). Real-Time Intrusion
Detection for Industrial CPS. IEEE Access, 9,
87712-87725.

(8]

[]

Huang, S., et al. (2020). Hardware-Assisted
Control Flow Protection for Embedded
Systems. IEEE Design & Test, 37(4), 56-63.
Chang, Y., & Chen,]J. (2023). Low-Overhead
Cryptography for IoT RTOS. [EEE
Transactions on Computers, 72(2), 355-369.

[10] Misra, S., et al. (2021). Securing CPS with

Lightweight Kernel Security. Elsevier FGCS,
122, 29-39.

Electronics, Communications, and Computing Summit | Jul - Sep 2024

