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 Efficient sensor fusion is essential when it comes to perception and 
actuation within context of latency-sensitive applications in the real-
time embedded systems, specifically in autonomous vehicles, unmanned 
aerial vehicles (UAV) and industrial robotics. These systems demand 
very strong timing assurances and deterministic task chronology so that 
the data collected by multiple sensors, frequently out of synch, can be 
latency-minted and integrated. The problem with conventional fixed-
priority preemptive scheduling algorithms, such as Fixed-Priority 
Preemptive Scheduling (FPPS) and Earliest Deadline First (EDF) is that 
they do not readjust dynamically to the changing workloads caused by 
real-world sensor variability, and instead cause undesirable jitter, 
deadline violations of tasks, and degraded system reliability. This paper 
puts forth a new hybrid scheduling optimization scheme to Real-Time 
Operating System (RTOS), that is candidate-specific to optimize the 
temporal aspect of sensor fusion pipelines. This would combine a static 
Deadline-Monotonic ( DM ) base scheduler with dynamic Slack-Aware 
Priority Adjuster (SAPA ) in which the priorities of tasks are re-
allocated at run time depending on real-time feedback as supplied by 
the execution profiler, sensor burst detection and slack time calculation. 
Implementing and testing the suggested strategy using FreeRTOS on an 
ARM cortex M4-based embedded device may test it under a variety of 
sensor loads. In experimentation we obtain a 42 percent reduction in 
average fusion latency, 30 percent better jitter consistency, and a higher 
utility in CPU utilization than baseline EDF and FPPS schedulers. 
Moreover, the system would be robust in face of bursty sensor events 
without compromising quality fusion results and starvation of 
background processes. Besides offering a scalable and very lightweight 
extension of basic RTOS kernels, the work also establishes the basis of 
intelligent scheduling techniques that will become a key in future 
safety-critical and mission-critical designs and systems where such a 
real-time sensor fusion is essential. The framework is transportable, 
simple to merge with current FreeRTOS projects and is flexible to 
heterogeneous tasking compositions, which renders the framework 
rightful to embedded AI tasks, robotics, and smart edge operations that 
work under hard real-time requirements. 
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1. INTRODUCTION 
Among the latest safety-critical systems and 
mission-critical systems today, real-time 
embedded systems are widely used in applications 
to autonomous vehicles, unmanned aerial systems 
(UAVs), industrial automation, healthcare, 
monitoring, and Internet of Things (IoT) 
implementations. One central aspect of these 
systems is the concept of sensor fusion whereby 
one combines the heterogeneous measurements of 
one or more sensor types; e.g. inertial, visual, 
positional and environmental in nature to obtain 
more accurate and effective estimation of 
situational awareness than is possible using one 

sensor type alone. An efficient sensor fusion 
process does not only the increased accuracy of 
the decision, but also leads to the real-time 
capability, which is inherent in navigation, evasion, 
and control feedback.The issue of such 
environments is the time dynamics of sensor 
signals. Sensors tend to exhibit various update 
rates, data volumes, and criticality, and therefore 
have an asynchronous pattern of task invocation, 
and load the CPU differently. With latency-
sensitive applications, delays in data fusion or 
processing, however slight, would impair system 
performance or possibly undermine safety or 
cause an actuation deadline to be missed. Thus, 
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having as low latencies as possible and temporal 
determinism in sensor fusion activities is a critical 
need. 
A large majority of these systems are constructed 
on Real-Time Operating Systems (RTOS) 
FreeRTOS, VxWorks or Zephyr, that are made to 
aid predictable planning of tasks and preemptive 
multitasking. But state-of-the-art RTOSs 
scheduling algorithms such as Fixed-Priority 
Preemptive Scheduling (FPPS), Rate Monotonic 
Scheduling (RMS), and Earliest Deadline First 

(EDF) have the problem that they apply the wrong 
paradigm to the problem, and work poorly on 
dynamic sensor-driven workloads. The algorithms 
mostly presuppose the fixed task behavior and 
cannot evolve to run-time fluctuations in execution 
times, arrival rates or bursty sensor data. This 
leads to task deadline misses, priority inversions 
and unduly large preemption overheads, which 
individual task in several cases have the potential 
to be disastrous to the reliability and 
responsiveness of the system. 

 

 
Figure 1. Challenges in RTOS Scheduling for Sensor Fusion in Real-Time Embedded Systems 

 
Besides, current static models of scheduling do not 
employ any feedback driven processes of 
adaptation which are essential in the real-world 
where task loads and sensor situations fluctuate in 
unforeseeable ways. As an example, in high-
velocity movement or in cases of the disturbance 
in the environment, the sensors of IMU and the 
vision can generate data with more frequent rates 
than usual, and the resource allocation and real-
time schedule changes need to be flexible. In such 
cases, the static schedules are not optimal and they 
can cause degraded fusion quality or loss of some 
critical data. 
To counter such challenges, latency-aware 
scheduling mechanisms are urgently required that 
can readjust task priorities according to optical 
feedback of the system in real-time. These 
processes have to balance between schedulability, 
resource efficiency and responsiveness on one 
hand, and ensure deterministic guarantees to hard 
real-time tasks. This study presents a new hybrid 
RTOS scheduling, which is composed of a Deadline-
Monotonic (DM) base policy, and a Slack-Aware 
Priority Adjuster (SAPA). The suggested approach 
keeps the classical real-time models predictability 

intact, in addition to including runtime adaptation 
through execution profiling and sensor workload 
characterization.This paper describes the system 
architecture, implementation methodology, as well 
as experimental assessment of this hybrid real-
time scheduling framework, which shows a 
significant improvement brings in fusion latency 
reduction and reduction of jitter, in a case in point 
that leads to high CPU use and good reliable in 
real-life sensor fusion tasks. 
 
2. LITERATURE REVIEW 
Real-time operating systems (RTOS) will be 
needed in embedded systems which have 
deterministic task schedules. rate monotonic 
Scheduling (RMS) and Earliest Deadline First 
(EDF): these scheduling algorithms are well known 
and widely used in periodic task models because 
the bound on schedulability of these algorithms is 
well understood [1]. A fundamental analysis was 
carried out by Liu and Layland [2] on analytical 
modeling of task sets using both fixed and dynamic 
priority schedulers though they are based on 
known constant workloads and do not consider 
high variability of sensor driven applications. 
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In sensor fusion systems, real time processing of 
asynchronous sensor data is needed to provide 
reliability in accuracy and responsiveness of the 
system. Simple execution time variation may affect 
even the stability of the fusion algorithms like the 
Extended Kalman Filter (EKF). Other research 
works like [3] and [4] show that latency and jitter 
play great role in the alignment of sensors and 
sensor fusion accuracy especially in situations like 
robotic and autonomous vehicles. 
Recently, there is research on adaptive scheduling 
techniques that respond to real-time systems 
behavior. There is already an idea of utilization-
aware scheduling of edge AI devices that has been 
proposed by Wang et al. [5]; it focuses more on 
energy efficiency, though, instead of latency 
determinism. On the same note, Kong and Wang 
[6] also proposed hybrid scheduling models of 
multicore systems but their work lacks direct 
integration with esteemed embedded RTOSs such 
as FreeRTOS and also do not directly consider 
fusion task deadlines. 
Regardless of such contributions, existing 
scheduling systems have insufficient support of 
real-time fusion requirements of applications with 
strict latency concerns. The gap is being discussed 
in this paper by introducing a hybrid RTOS 
scheduler which implements a static Deadline-
Monotonic (DM) priority scheme, but is also 
accompanied by a dynamic Slack-Aware Priority 
Adjuster (SAPA) thus enabling the workload-
sensitive task reordering at run time in response 
to fluctuations and execution feedback. 
 
3. System Architecture 
The current planned system featuring real-time 
sensor fusion is designed using an embedded 
platform of low power and high performance since 
it is built on an ARM Cortex-M4 processor that 
provides a level of dynamism between 
computation and responsiveness of latency 
algorithms. Its hardware is composed of a 

STM32F446RE microcontroller with 32-bit; 
operating frequency of 180 MHz, consisting of 512 
KB flash memory and 128 KB SRAM, integrated 
with main sensor modules, i.e. inertial 
measurements (according to STM32F446RE users 
guide it supports the MPU6050- inertial sensor 
module to include accelerometer and gyroscope), 
global positioning data (according to 
STM32F446RE users guide it These are the 
asynchronous inputs with the different sampling 
frequencies and data rates and each of them 
demands a flexible yet deterministic processing 
pipeline. The embedded system uses the FreeRTOS 
kernel that offers lightweight multitasking, 
preemptive scheduling, and synchronization 
primitives that are necessary in modular real-time 
executions. The work of tasks in application can be 
divided into individual functional threads sensor 
acquisition:oriented to work with hardware 
interrupts and buffered reads; data 
preprocessing:low-pass filters, timestamp 
alignment and outlier rejection; fusion:integrates 
all the sensor streams with the use of an extended 
Kalman Filter (EKF) algorithm. The EKF is chosen 
because it is generally widely applicable and used 
in embedded systems to estimate probabilistic 
states with respect to noisy and incomplete 
observations. The FreeRTOS message queues and 
semaphores are used to communicate between 
task and avoid inconsistencies and race conditions. 
The important stipulation of this architecture is 
that all the key sensor-to-fusion processing must 
be accomplished within a deterministic quanta of 
control loop, and hence make real-time situational 
awareness and decision-making possible. In order 
to continuing system performance, the 
architecture also has profiling hooks and 
monitoring processes that monitor the use of CPU, 
times taken in processing tasks, and system slack 
that are also used to determine the policies in 
dynamic scheduling used in this work. 

 

 
Figure 2. System Architecture of the RTOS-Based Sensor Fusion Framework 
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4. METHODOLOGY 
4.1 System Overview 
The proposed optimization framework to a so-
called scheduling problem focuses on embedded 
systems, which aim at real-time sensor fusion, and 
the overall goal is to ensure that the asynchronous 
sensor readings, and the corresponding 
computations to process and integrate the 
readings into those output streams, involving 
redundant sensor data, happen with short latency 
and high temporal predictability. Such systems are 
generally put to use into the real time operation 
environment like autonomous navigation, 
controlling robots, and real-time surveillance 
where the data acquisition or fusion delay may 
have direct effects on safety and effectiveness of 
operations. The microcontroller used in this 

experiment, STM32F446RE, is a low power 
platform with a high-performance application 
core, the ARM Cortex-M4 running at an 180 MHz 
frequency with 512 KB of flash and 128 KB of 
SRAM memory, ideal in real-time applications and 
low-power applications. The sensing suite 
comprised by the MPU6050 (an accelerometer and 
a gyroscope that measures inertial measurement) 
and the NEO-6M GPS module that measures spatial 
localization), and the OV7670 camera to 
acquisitively render image data. The data rates on 
distinct sensors are various and the sensors must 
be treated individually in the RTOS setting. The 
system core, or software upon which the system is 
based, is FreeRTOS v 10.4.6, with system tick set at 
1 kHz, using preemptive scheduling and having ten 
simultaneous tasks. 

 

 
Figure 3. Functional Mapping of RTOS Tasks to Sensor Fusion Workflow 

 
To manage the variety of processing pipeline, the 
application itself is organized in five primary tasks: 
T1, Sensor Acquisition Task, will interact with all 
the physical sensors and buffer the raw data. T2, 
the Data Preprocessing Task, cleans noise, 
harmonizes timestamp, and fills in missing values. 
The Fusion Task T3 runs the Extended Kalman 
filter (EKF) or a complementary filter to provide a 
coherent estimate of system state. The 
Output/Logging Task, T4, writes fused results in 
storage or sends to outside systems. Lastly, the 
Diagnostics and Communication Task T5 is in 
charge of telemetry, measurements of 
performance, and health conditions. Every duty is 
given its own time slot and comparative due date 
with the condition that the task operation is 
limited in real time. FreeRTOS shared memory 
buffers and message queues are used in Inter-task 
communication, mutexes protect the mail and 
memory buffers to prevent data races and 
guarantee coordination. Since sensor fusion 
pipelines are very sensitive to cumulative latency 

and task jitter, the architecture as specified 
requires a very specific scheduling to allow such 
tight timing guarantees, an aspect that makes the 
architecture particularly fitting to apply the 
presented enhancement to hybrid scheduling. 
 
4.2 Task Profiling and Classification 
Consideration of the real scheduling in a real-time 
operating system (RTOS) requires not only 
suitable choice of scheduler algorithms, but also 
effort in knowing well the temporal qualities of 
each task. To do this in the work, the discussion of 
all the RTOS tasks implicated in the sensor fusion 
chain functional process is carried out to make it 
possible to optimize this process at the run time 
level by means of dynamic programming. Profiling 
technique This approach integrates static analysis 
(generation of theoretical worst-case bounds) with 
dynamic runtime tracing, supported by FreeRTOS 
trace hooks, to provide real execution performance 
data under different sensor loading conditions. 
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Key timing parameters used in this profiling 
include: 
 Worst-Case Execution Time (WCET): The 

maximum time a task could take during 
execution, estimated via compiler-assisted 
static timing analysis, providing a safe upper 
bound for real-time guarantees. 

 Actual Execution Time (AET): The real-world 
average or observed execution duration, 
recorded during runtime using trace logs and 
hook functions. 

 Task Periodicity (T): Determined based on 
either the intrinsic sensor update rate (e.g., 
100 Hz for IMUs, 1 Hz for GPS) or system-
defined processing intervals. 

 Deadline (D): Defined as the latest time by 
which a task must complete its execution. In 
real-time systems, deadlines are typically set 
equal to or slightly less than the task period to 
ensure deterministic behavior. 

 Slack Time (S): A critical parameter for 
adaptive scheduling, calculated as: 

S = D − AET 
Slack represents the leeway available for 
scheduling adjustments without compromising 
task deadlines. 
Using these profiling metrics, tasks are categorized 
into three primary classes—Critical, Supportive, 
and Non-Critical—based on their timing sensitivity 
and functional importance within the sensor fusion 
pipeline. The classification is summarized in  

 
Table 1. Task Classification Based on Timing Sensitivity and Functional Role in RTOS-Based Sensor 

Fusion System 
Task ID Name Classification Characteristics 
T₁ Sensor Acquisition Critical Event-driven, tight deadline, high priority 
T₂ Preprocessing Critical Fixed periodic, computationally intensive 
T₃ Fusion (EKF) Critical Fixed periodic, latency-sensitive core logic 
T₄ Output/Logging Supportive Tolerant to jitter and moderate delay 
T₅ Communication/Diagnostics Non-Critical Best-effort, high slack, background utility 

 
The classification of tasks on this basis is the basis 
of the suggested hybrid approach to the schedule. 
Critical tasks (T 1-T 3), which are at the center of 
sensor acquisition and state estimation should not 
lose deterministic scheduling guarantees. On the 
other hand, supportive and not-critical tasks (T 4, 
T 5 ) have the flexibility in changes in priority and 
deferred execution depending on the system load 
and availability of the slack time. Through this 
categorization, the scheduling system gives 
latency-intensive operations first priority and at 
the same time still maximizes its utilization of CPU 
cycles in support of remaining activities. 
This strategic separation of concerns permits the 
scheduler to ensure hard real-time constraints on 
required computation and dynamically adapt to 
the requirements of the running program 
meanwhile temporal predictability, jitter, and in 
general the optimization of the overall latency 
throughout the embedded system, are achieved. 
 
4.3 Hybrid Scheduling Framework 
The main idea which will be passed in this paper is 
a* hybrid scheduling framework incorporating 
static and dynamic priority allocation schemes. It 
extends the Deadline Monotonic Scheduling (DMS) 
that includes a runtime Slack-Aware Priority 
Adjuster (SAPA). The most important might 
consist of: 
 
(a) Static Base Scheduler: Deadline Monotonic 
(DM) 

A predictable and analyzable backbone to perform 
management of real-time tasks on embedded 
systems through the Deadline Monotonic (DM) 
scheduling algorithm is proposed to be a part of 
the proposed hybrid scheduling algorithm (HSA). 
Within the DM policy, the relative deadline is used 
to statically determine the priority of the tasks 
with the earlier deadlines having higher priorities. 
The technique is specifically very efficient at real-
time systems whose task completion periods and 
deadlines are either known a priori or otherwise 
relatively fixed, as in the case of the critical tasks 
T1 (Sensor Acquisition), T2 (Preprocessing), and T3 
(Fusion). Static prioritization of these time-
sensitive tasks in the DM scheduler assures 
deterministic system behavior, reduces deadline 
overruns and makes schedulability analysis 
tractable by well known response time 
expressions. In the proposed system, DM base 
scheduler ensures that critical data-processing 
activities are not interfered with by less critical 
activities such that the temporal integrity of sensor 
fusion pipeline is upheld in the proposed system. 
Additionally, it is light-weight and high-
performance due to its incompletely-dynamic 
character; having only minimal overhead on 
runtime, treatment that is desirable in low-power 
micro controller environments. Although DM in 
isolation is not responsive to workload changes, 
this means we have a predictable baseline 
behavior on which the dynamic mechanisms, 
including the Slack-Aware Priority Adjuster 
(SAPA), can be very effective and so allow adaptive 
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responsiveness without invading hard real-time 
boundaries.  
 
(b) Slack-Aware Priority Adjuster (SAPA) 
Slack-Aware Priority Adjuster (SAPA) is the most 
important part of proposed hybrid RTOS 
scheduling framework that will make the usage of 
CPU improvements and responsiveness of the 
system without jeopardizing the timing promises 
of critical tasks. A companion to the static 
Deadline-Monotonic (DM) scheduler, SAPA is an 
on-line algorithm which constantly makes 
observational measurements of CPU utilization, job 
queue lengths, and deadline-deadtime-delay slack 
times, or the difference between when a job is 
supposed to end and when it actually does. Under 
these observations, SAPA dynamically puts the due 
degree of priority of both non-critical (T5: 
Communication/Diagnostics) and supportive (T4: 
Output/Logging) tasks. As an example, when the 
CPU load is not high and there is enough slack, 
SAPA can make high-priority background work via 
increasing its priority so that the work can be done 
in advance. On the other hand, when the system 
load is high or the sensor shorts burst, it delays or 
replaces them with low priority so that the 
processing bandwidth can be turned over to the 
critical tasks of data acquisition, preprocessing and 
fusion (T1-T3). Such dynamic redistributing 
provides determinism and compliance with the 
deadlines of high-priority tasks, and allows 
efficient background corresponding to idle 
periods. Blending of SAPA enables the system to 
accommodate dynamically changing workload, 
dispatch tasks (based on their deadlines) and 
processor availability and also helps considerable 
reduce the probability of priority inversion and 
task missing their deadlines, particularly in mixed-
criticality real-time tasks.  
 
(c) Feedback Mechanism 
The proposed framework to perform the adaptive 
real-time scheduling according to the dynamic 

nature of the system considers the works of a 
feedback-based control mechanism that runs as 
input at runtime. The task of collecting and 
analyzing the important system parameters such 
as the time of the execution of tasks, the values of 
CPU load, the lengths of the tasks queues, and the 
delays of inter-task communications is performed 
by a dedicated monitoring task that runs 
periodically every 100 milliseconds. The most 
important aspect of this mechanism is to compute 
slack time of each task which is defined as the 
difference between the deadline of a task and the 
time that it is being carried out to ascertain the 
flexibility in the scheduling that is provided in the 
framework. Such real-time feedback enables the 
scheduler to observe these variations e.g. sensor 
bursts, which could temporarily exceed the 
computing demand of particular tasks (e.g. high-
frequency IMU updates during fast movement). 
When the overall CPU usage reaches the value of 
85 percent or more, then the scheduler triggers 
mitigation methods, including reducing the 
priority of non-essential or facilitating tasks (e.g. 
T4: Logging, T5: Diagnostics) or postponing them 
until the beginning of the next cycle. This makes 
sure that important tasks (T1- T3) of acquisition, 
preprocessing and fusion are accorded exclusive 
access to the CPU to ensure that they fulfill their 
real-time constraints. The system is dynamically 
responsive to client feedback in terms of latency 
minimization and jitter reduction and overall 
temporal predictability within environments with 
arbitrary, previously unpredictable sensory event 
generators, and is therefore a highly desirable 
approach to work with in the area of embedded 
applications, both in terms of its flexibility to deal 
with highly variable workloads, and in safety-
critical applications. 
This hybrid approach gives hard real-time 
properties to the core fusion pipeline roadmap, 
whilst giving flexibility to the background tasks: it 
is preferred due to optimal latency of the system, 
minimising jitter without violating determinism. 

 

 
Figure 4. Hybrid RTOS Scheduling Framework with DM Base and SAPA Runtime Adaptation 
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5. Experimental Setup 
In order to test the proposed hybrid solution to 
scheduling, a real-time embedded testing platform 
was made by the utilization of the STM32 Nucleo-
144 development board, which has the 
STM32F446RE microcontroller on the basis of the 
ARM Cortex-M4 core having its clock frequency 
increased up to 180 MHz. This board offers a 
perfect compromise between computational 
capability and real-time control, and this qualifies 
it to be used in verifying time-sensitive sensor 
fusion rates. Its sensor set consists of the 
MPU6050 that has 6-axis inertial measurement 
functions (accelerometer/gyroscope), the NEO-6M 
module global positioning system, and the OV7670 
CMOS camera module providing a visual input of 
data. Such sensors produce heterogeneous data 
streams on different frequencies and are 
connected to each other through interfaces using I 
2 C and UART protocols. The system is set to run 
FreeRTOS v10, the tomic rate is set to 1 kHz to 
provide fine-grained tuning capabilities, and 10 
concurrent active tasks are set so that the 
simulated real multitasking environment is 

represented. Every component of fusion pipeline, 
such as sensor acquisition, preprocessing, EKF-
based fusion, logging, and diagnostics, is separated 
into a separate FreeRTOS thread with 
communication through message queues and 
coordinated using semaphores and mutexes. The 
proposed Slack-Aware Priority Adjuster (SAPA) 
matched with a Deadline Monotonic (DM) 
scheduler is evaluated in the experiment, which 
sets the scorecard on the two traditional 
scheduling strategies, Fixed-Priority Preemptive 
Strategy (FP) and Earliest Deadline First (EDF). A 
set of performance measures, including average 
task latency, jitter, CPU utilization, and deadline 
miss rate is taken under a variety of workload 
conditions, both steady-state operation and high-
intensity sensor bursts. This configuration allows 
to show in a controlled and still representative 
environment the ability of SAPA-enhanced DM 
scheduling to increase the responsiveness and 
stability of systems to dynamic conditions, making 
it suitable to latency-sensitive, real-time embedded 
systems. 

 
Table 2. Experimental Configuration and Evaluation Parameters for RTOS-Based Sensor Fusion Testbed 

Parameter Value 
Microcontroller STM32F446RE (ARM Cortex-M4 @ 180 MHz) 
RTOS Version FreeRTOS v10 
Tick Rate 1 kHz 
Total Active Tasks 10 
Sensor Modules MPU6050, NEO-6M, OV7670 
Communication Interfaces I²C, UART 
Compared Schedulers FP, EDF, DM + SAPA 
Evaluation Metrics Latency, Jitter, CPU Load, Deadline Miss Rate 
Test Scenarios Steady-State, Sensor Burst 

 
6. RESULTS AND DISCUSSION 
We can observe a well evident performance 
superiority of the introduced hybrid scheduling 
scheme (DM + SAPA) to the traditional scheduling 
schemes like Fixed-Priority Preemptive Scheduling 
(FP) or Earliest Deadline First (EDF) of the 
experimental results compiled in Table 3. The 
proposed scheduler returns an average fusion 
latency of 10.0 ms which is quite lower vis-a-vis 
the latencies of 17.2 ms and 14.6 ms respectively 
for FP and EDF. This is directly owed to the fact 
that the Slack-Aware Priority Adjuster (SAPA) is 
the way of runtime flexibility allowing the best-

effort usage of CPU time to critical tasks when 
system load accentuates or when sensor bursts are 
attempted. Speaking of jitter, or the type of 
consistency in the task response times, the 
proposed approach provides the variation in just 
1.9 ms, as opposed to 4.3 ms (FP) and 3.8 ms 
(EDF). The smaller jitter is of especial importance 
to sensor fusion applications, where the accurate 
synchronization of asynchronous sensor data 
streams is significant in terms of precise 
estimation based on algorithms like the Extended 
Kalman Filter (EKF). 
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Figure 6. Performance Comparison of Scheduling Strategies — Average Fusion Latency, Max Jitter, and 

CPU Utilization across Fixed-Priority, EDF, and Proposed DM + SAPA Framework 
 
The CPU utilization of the proposed method is also 
significantly higher at 87.1% unlike FP at 78.2% 
and EDF at 84.5 percent. This is due to the 
efficiencies that are promised by the SAPA 
mechanism whose ideal operation is the utilization 
of otherwise wasted CPU cycles particularly those 
windows that allow low priority tasks to run 
dynamically control the priorities placed on 
different tasks in the run time through the slacks 
and the queues. This makes the execution profile 

more balanced, with non-critical and support work 
(logging or diagnostics) being done in whenever-
possible but not timing-constrained ways. As 
compared to the non dynamic scheduling 
strategies which tend to leave the CPU resources 
idle to maintain deterministic timing, the hybrid 
scheduler can adapt to the system changing status 
and maintain high performance along with good 
real time guarantees. 

 
Table 3. Performance Metrics Comparison of Scheduling Strategies 

Scheduler Avg. Fusion 
Latency (ms) 

Max Jitter (ms) CPU Utilization (%) 

Fixed-Priority 17.2 4.3 78.2 

EDF 14.6 3.8 84.5 

Proposed (DM + SAPA) 10 1.9 87.1 

 
During stress-test, the system received a 30 
percent gauge in the sensor data rates, series ago 
simulated burst traffic, due to the IMU and the 
camera modules. In that setting, the proposed 
framework had a graceful degradation, keeping 
average fusion latencies below 20 ms and never 
experienced any high-priority deadlines being 
missed. Under the same conditions, however, the 
FP and EDF schedulers either had lower fusion 
accuracy or with an increase in transgression rates 
(missed deadlines) because of the lack of load 
awareness at run-time and statical prioritization. 
These findings confirm the correctness of the idea 
of using static Deadline-Monotonic scheduling 
together with dynamic SAPA-based priority 
assignments to the systems that have a latency-
sensitive nature and operate in a partially 
predictable environment, with mixed-criticality. 
 
7. CONCLUSION 
In this study, a generic and flexible hybrid 
scheduling scheme is proposed that can be used to 

optimize real time performance using embedded 
sensor fusion systems which are constructed on 
Real-Time Operating Systems (RTOS). The 
proposed scheme allows combining a static 
Deadline Monotonic (DM) scheduling base with a 
dynamic Slack-Aware Priority Adjuster (SAPA) 
that makes it predictable to execute critical tasks 
and dynamically reallocate the CPU resources 
relative to the system load and the analysis of the 
runtime slacks. The presence of a feedback 
mechanism will also make it easier to have the 
scheduler hold up to the sensor bursts and vary 
loads without sacrificing hard real-time 
requirements. The proposed framework shows 
that on a FreeRTOS-based STM32-based 
embedded platform it is possible to achieve a 
considerable improvement in terms of all the main 
performance indicators (such as up to 42 percent 
decrease in the average fusion latency, 55 percent 
decrease in jitter, and a substantial increase in CPU 
usage) as compared to more traditional Fixed-
Priority and EDF schedulers. Also the system 
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performed gracefully when stressed and this 
affirmed the dependability of the same when used 
in dynamic settings. The work relates to the larger 
community of real-time embedded computing, 
which already has some lightweight, portable, and 
runtime-adaptive scheduling models, but they, 
unlike ours, have been applied to systems with 
fewer limited resources. Future isc Directions The 
framework can be adapted to multi-core RTOS 
environments and to support hardware-assisted 
timing monitors and integration with AI-based 
workload forecasting models to further improve 
efficiency and predictability in safety-critical and 
mission-critical systems. 
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