Electronics, Communications, and Computing Summit

Vol. 2, No. 3, Jul - Sep 2024, pp. 89-97

ISSN: 3107-8222, DOI: https://doi.org/10.17051/ECC/02.03.11

Optimization of RTOS Scheduling for Latency-Sensitive
Sensor Fusion Systems

Dr. Nidhi Mishra

Assistant Professor, Department of CS & IT, Kalinga University, Raipur, India,
Email: ku.nidhimishra@kalingauniversity.ac.in

Article Info

ABSTRACT

Article history:

Received : 21.07.2024
Revised :23.08.2024
Accepted :25.09.2024

Keywords:

RTOS scheduling,

Sensor fusion,

Latency optimization,

Real-time systems,
Deadline-monotonic scheduling,
Task profiling,

Embedded systems,
Slack-aware scheduling,
FreeRTOS,

Adaptive task management

Efficient sensor fusion is essential when it comes to perception and
actuation within context of latency-sensitive applications in the real-
time embedded systems, specifically in autonomous vehicles, unmanned
aerial vehicles (UAV) and industrial robotics. These systems demand
very strong timing assurances and deterministic task chronology so that
the data collected by multiple sensors, frequently out of synch, can be
latency-minted and integrated. The problem with conventional fixed-
priority preemptive scheduling algorithms, such as Fixed-Priority
Preemptive Scheduling (FPPS) and Earliest Deadline First (EDF) is that
they do not readjust dynamically to the changing workloads caused by
real-world sensor variability, and instead cause undesirable jitter,
deadline violations of tasks, and degraded system reliability. This paper
puts forth a new hybrid scheduling optimization scheme to Real-Time
Operating System (RTOS), that is candidate-specific to optimize the
temporal aspect of sensor fusion pipelines. This would combine a static
Deadline-Monotonic (DM) base scheduler with dynamic Slack-Aware
Priority Adjuster (SAPA) in which the priorities of tasks are re-
allocated at run time depending on real-time feedback as supplied by
the execution profiler, sensor burst detection and slack time calculation.
Implementing and testing the suggested strategy using FreeRTOS on an
ARM cortex M4-based embedded device may test it under a variety of
sensor loads. In experimentation we obtain a 42 percent reduction in
average fusion latency, 30 percent better jitter consistency, and a higher
utility in CPU utilization than baseline EDF and FPPS schedulers.
Moreover, the system would be robust in face of bursty sensor events
without compromising quality fusion results and starvation of
background processes. Besides offering a scalable and very lightweight
extension of basic RTOS kernels, the work also establishes the basis of
intelligent scheduling techniques that will become a key in future
safety-critical and mission-critical designs and systems where such a
real-time sensor fusion is essential. The framework is transportable,
simple to merge with current FreeRTOS projects and is flexible to
heterogeneous tasking compositions, which renders the framework
rightful to embedded Al tasks, robotics, and smart edge operations that
work under hard real-time requirements.

1. INTRODUCTION

sensor type alone. An efficient sensor fusion

Among the latest safety-critical systems and
mission-critical ~ systems today, real-time
embedded systems are widely used in applications
to autonomous vehicles, unmanned aerial systems
(UAVs), industrial automation, healthcare,
monitoring, and Internet of Things (IoT)
implementations. One central aspect of these
systems is the concept of sensor fusion whereby
one combines the heterogeneous measurements of
one or more sensor types; e.g. inertial, visual,
positional and environmental in nature to obtain
more accurate and effective estimation of
situational awareness than is possible using one

process does not only the increased accuracy of
the decision, but also leads to the real-time
capability, which is inherent in navigation, evasion,
and control feedback.The issue of such
environments is the time dynamics of sensor
signals. Sensors tend to exhibit various update
rates, data volumes, and criticality, and therefore
have an asynchronous pattern of task invocation,
and load the CPU differently. With latency-
sensitive applications, delays in data fusion or
processing, however slight, would impair system
performance or possibly undermine safety or
cause an actuation deadline to be missed. Thus,

Electronics, Communications, and Computing Summit | Jul - Sep 2024 89

Dr. Nidhi Mishra et al / Optimization of RTOS Scheduling for Latency-Sensitive Sensor Fusion Systems

having as low latencies as possible and temporal
determinism in sensor fusion activities is a critical
need.

A large majority of these systems are constructed
on Real-Time Operating Systems (RTOS)
FreeRTOS, VxWorks or Zephyr, that are made to
aid predictable planning of tasks and preemptive
multitasking. But state-of-the-art RTOSs
scheduling algorithms such as Fixed-Priority
Preemptive Scheduling (FPPS), Rate Monotonic
Scheduling (RMS), and Earliest Deadline First

(EDF) have the problem that they apply the wrong
paradigm to the problem, and work poorly on
dynamic sensor-driven workloads. The algorithms
mostly presuppose the fixed task behavior and
cannot evolve to run-time fluctuations in execution
times, arrival rates or bursty sensor data. This
leads to task deadline misses, priority inversions
and unduly large preemption overheads, which
individual task in several cases have the potential
to be disastrous to the reliability and
responsiveness of the system.

(A
Sensor Fusion in
Real-Time Embedded
Systems
7
G 2
Challenges of
RTOS Scheduling
Task Preemption || Priority
Deadline Overhead Inversion
Violations
, S
e N
Need for
Latency-Aware
Scheduling

Figure 1. Challenges in RTOS Scheduling for Sensor Fusion in Real-Time Embedded Systems

Besides, current static models of scheduling do not
employ any feedback driven processes of
adaptation which are essential in the real-world
where task loads and sensor situations fluctuate in
unforeseeable ways. As an example, in high-
velocity movement or in cases of the disturbance
in the environment, the sensors of IMU and the
vision can generate data with more frequent rates
than usual, and the resource allocation and real-
time schedule changes need to be flexible. In such
cases, the static schedules are not optimal and they
can cause degraded fusion quality or loss of some
critical data.

To counter such challenges, latency-aware
scheduling mechanisms are urgently required that
can readjust task priorities according to optical
feedback of the system in real-time. These
processes have to balance between schedulability,
resource efficiency and responsiveness on one
hand, and ensure deterministic guarantees to hard
real-time tasks. This study presents a new hybrid
RTOS scheduling, which is composed of a Deadline-
Monotonic (DM) base policy, and a Slack-Aware
Priority Adjuster (SAPA). The suggested approach
keeps the classical real-time models predictability

intact, in addition to including runtime adaptation
through execution profiling and sensor workload
characterization.This paper describes the system
architecture, implementation methodology, as well
as experimental assessment of this hybrid real-
time scheduling framework, which shows a
significant improvement brings in fusion latency
reduction and reduction of jitter, in a case in point
that leads to high CPU use and good reliable in
real-life sensor fusion tasks.

2. LITERATURE REVIEW

Real-time operating systems (RTOS) will be
needed in embedded systems which have
deterministic task schedules. rate monotonic
Scheduling (RMS) and Earliest Deadline First
(EDF): these scheduling algorithms are well known
and widely used in periodic task models because
the bound on schedulability of these algorithms is
well understood [1]. A fundamental analysis was
carried out by Liu and Layland [2] on analytical
modeling of task sets using both fixed and dynamic
priority schedulers though they are based on
known constant workloads and do not consider
high variability of sensor driven applications.

90 Electronics, Communications, and Computing Summit | Jul - Sep 2024

Dr. Nidhi Mishra et al / Optimization of RTOS Scheduling for Latency-Sensitive Sensor Fusion Systems

In sensor fusion systems, real time processing of
asynchronous sensor data is needed to provide
reliability in accuracy and responsiveness of the
system. Simple execution time variation may affect
even the stability of the fusion algorithms like the
Extended Kalman Filter (EKF). Other research
works like [3] and [4] show that latency and jitter
play great role in the alignment of sensors and
sensor fusion accuracy especially in situations like
robotic and autonomous vehicles.

Recently, there is research on adaptive scheduling
techniques that respond to real-time systems
behavior. There is already an idea of utilization-
aware scheduling of edge Al devices that has been
proposed by Wang et al. [5]; it focuses more on
energy efficlency, though, instead of latency
determinism. On the same note, Kong and Wang
[6] also proposed hybrid scheduling models of
multicore systems but their work lacks direct
integration with esteemed embedded RTOSs such
as FreeRTOS and also do not directly consider
fusion task deadlines.

Regardless of such contributions, existing
scheduling systems have insufficient support of
real-time fusion requirements of applications with
strict latency concerns. The gap is being discussed
in this paper by introducing a hybrid RTOS
scheduler which implements a static Deadline-
Monotonic (DM) priority scheme, but is also
accompanied by a dynamic Slack-Aware Priority
Adjuster (SAPA) thus enabling the workload-
sensitive task reordering at run time in response
to fluctuations and execution feedback.

3. System Architecture

The current planned system featuring real-time
sensor fusion is designed using an embedded
platform of low power and high performance since
it is built on an ARM Cortex-M4 processor that

provides a level of dynamism between
computation and responsiveness of latency
algorithms. Its hardware is composed of a

Fusion

semoecage

STM32F446RE microcontroller with 32-bit;
operating frequency of 180 MHz, consisting of 512
KB flash memory and 128 KB SRAM, integrated
with main sensor modules, i.e. inertial
measurements (according to STM32F446RE users
guide it supports the MPU6050- inertial sensor
module to include accelerometer and gyroscope),
global positioning data (according to
STM32F446RE users guide it These are the
asynchronous inputs with the different sampling
frequencies and data rates and each of them
demands a flexible yet deterministic processing
pipeline. The embedded system uses the FreeRTOS
kernel that offers lightweight multitasking,
preemptive scheduling, and synchronization
primitives that are necessary in modular real-time
executions. The work of tasks in application can be
divided into individual functional threads sensor
acquisition:oriented to work with hardware
interrupts and buffered reads; data
preprocessing:low-pass filters, timestamp
alignment and outlier rejection; fusion:integrates
all the sensor streams with the use of an extended
Kalman Filter (EKF) algorithm. The EKF is chosen
because it is generally widely applicable and used
in embedded systems to estimate probabilistic
states with respect to noisy and incomplete
observations. The FreeRTOS message queues and
semaphores are used to communicate between
task and avoid inconsistencies and race conditions.
The important stipulation of this architecture is
that all the key sensor-to-fusion processing must
be accomplished within a deterministic quanta of
control loop, and hence make real-time situational
awareness and decision-making possible. In order
to continuing system performance, the
architecture also has profiling hooks and
monitoring processes that monitor the use of CPU,
times taken in processing tasks, and system slack
that are also used to determine the policies in
dynamic scheduling used in this work.

Scheduler

CPU

$calcular

Task (Extencec Profiler
interrupts A
C Data Preprocessmg
©]
5.‘_‘3 i (fllterlng alugnment)
[—
&
Fuswn Task
(Extended Kalmann Filter)
A
messag
queues| semaphores
y

MPUB050
(IMU)

NEO-6M
(GPS)

ove760
(Camera)

STM32F446RE
Figure 2. System Architecture of the RTOS-Based Sensor Fusion Framework

Electronics, Communications, and Computing Summit | Jul - Sep 2024 91

Dr. Nidhi Mishra et al / Optimization of RTOS Scheduling for Latency-Sensitive Sensor Fusion Systems

4. METHODOLOGY

4.1 System Overview

The proposed optimization framework to a so-
called scheduling problem focuses on embedded
systems, which aim at real-time sensor fusion, and
the overall goal is to ensure that the asynchronous
sensor readings, and the corresponding
computations to process and integrate the
readings into those output streams, involving
redundant sensor data, happen with short latency
and high temporal predictability. Such systems are
generally put to use into the real time operation
environment like autonomous navigation,
controlling robots, and real-time surveillance
where the data acquisition or fusion delay may
have direct effects on safety and effectiveness of

experiment, STM32F446RE, is a low power
platform with a high-performance application
core, the ARM Cortex-M4 running at an 180 MHz
frequency with 512 KB of flash and 128 KB of
SRAM memory, ideal in real-time applications and
low-power applications. The sensing suite
comprised by the MPU6050 (an accelerometer and
a gyroscope that measures inertial measurement)
and the NEO-6M GPS module that measures spatial
localization), and the O0OV7670 camera to
acquisitively render image data. The data rates on
distinct sensors are various and the sensors must
be treated individually in the RTOS setting. The
system core, or software upon which the system is
based, is FreeRTOS v 10.4.6, with system tick set at
1 kHz, using preemptive scheduling and having ten

operations. The microcontroller used in this simultaneous tasks.
e Scheduler
Message Deadiine, (DM +S APA)
| Priority
T4 T, T3 Ty Ts
Sensor Data Fusion Output/ | |Diagnostics
Acquisition| |Processoc-| | Task (EKF Logging and
Task sing Task (EKF) Task CommTunLcation
as
[T I
Message Queues, Shared Buffers, Mutexes
!
[T1: Sensor Acquisition Task]
MPUB050| | NEO-6M NEO-6 ov7670
(IMU) (GPS) (GPS) (Camera)
RTOS Task

Figure 3. Functional Mapping of RTOS Tasks to Sensor Fusion Workflow

To manage the variety of processing pipeline, the
application itself is organized in five primary tasks:
T1, Sensor Acquisition Task, will interact with all
the physical sensors and buffer the raw data. T,
the Data Preprocessing Task, cleans noise,
harmonizes timestamp, and fills in missing values.
The Fusion Task Tz runs the Extended Kalman
filter (EKF) or a complementary filter to provide a
coherent estimate of system state. The
Output/Logging Task, T4, writes fused results in
storage or sends to outside systems. Lastly, the
Diagnostics and Communication Task Ts is in
charge of telemetry, measurements of
performance, and health conditions. Every duty is
given its own time slot and comparative due date
with the condition that the task operation is
limited in real time. FreeRTOS shared memory
buffers and message queues are used in Inter-task
communication, mutexes protect the mail and
memory buffers to prevent data races and
guarantee coordination. Since sensor fusion
pipelines are very sensitive to cumulative latency

92

and task jitter, the architecture as specified
requires a very specific scheduling to allow such
tight timing guarantees, an aspect that makes the
architecture particularly fitting to apply the
presented enhancement to hybrid scheduling.

4.2 Task Profiling and Classification
Consideration of the real scheduling in a real-time
operating system (RTOS) requires not only
suitable choice of scheduler algorithms, but also
effort in knowing well the temporal qualities of
each task. To do this in the work, the discussion of
all the RTOS tasks implicated in the sensor fusion
chain functional process is carried out to make it
possible to optimize this process at the run time
level by means of dynamic programming. Profiling
technique This approach integrates static analysis
(generation of theoretical worst-case bounds) with
dynamic runtime tracing, supported by FreeRTOS
trace hooks, to provide real execution performance
data under different sensor loading conditions.

Electronics, Communications, and Computing Summit | Jul - Sep 2024

Dr. Nidhi Mishra et al / Optimization of RTOS Scheduling for Latency-Sensitive Sensor Fusion Systems

Key timing parameters used in this profiling

include:

» Worst-Case Execution Time (WCET): The
maximum time a task could take during
execution, estimated via compiler-assisted
static timing analysis, providing a safe upper
bound for real-time guarantees.

» Actual Execution Time (AET): The real-world
average or observed execution duration,
recorded during runtime using trace logs and
hook functions.

» Task Periodicity (T): Determined based on
either the intrinsic sensor update rate (e.g.,
100 Hz for IMUs, 1 Hz for GPS) or system-
defined processing intervals.

» Deadline (D): Defined as the latest time by
which a task must complete its execution. In
real-time systems, deadlines are typically set
equal to or slightly less than the task period to
ensure deterministic behavior.

» Slack Time (S): A critical parameter for
adaptive scheduling, calculated as:

S =D — AET

Slack represents the leeway available for
scheduling adjustments without compromising
task deadlines.

Using these profiling metrics, tasks are categorized
into three primary classes—Critical, Supportive,
and Non-Critical—based on their timing sensitivity
and functional importance within the sensor fusion
pipeline. The classification is summarized in

Table 1. Task Classification Based on Timing Sensitivity and Functional Role in RTOS-Based Sensor
Fusion System

Task ID | Name Classification | Characteristics

T, Sensor Acquisition Critical Event-driven, tight deadline, high priority
T, Preprocessing Critical Fixed periodic, computationally intensive

T; Fusion (EKF) Critical Fixed periodic, latency-sensitive core logic
T, Output/Logging Supportive Tolerant to jitter and moderate delay

Ts Communication/Diagnostics | Non-Critical Best-effort, high slack, background utility

The classification of tasks on this basis is the basis
of the suggested hybrid approach to the schedule.
Critical tasks (T 1-T 3), which are at the center of
sensor acquisition and state estimation should not
lose deterministic scheduling guarantees. On the
other hand, supportive and not-critical tasks (T 4,
T 5) have the flexibility in changes in priority and
deferred execution depending on the system load
and availability of the slack time. Through this
categorization, the scheduling system gives
latency-intensive operations first priority and at
the same time still maximizes its utilization of CPU
cycles in support of remaining activities.

This strategic separation of concerns permits the
scheduler to ensure hard real-time constraints on
required computation and dynamically adapt to
the requirements of the running program
meanwhile temporal predictability, jitter, and in
general the optimization of the overall latency
throughout the embedded system, are achieved.

4.3 Hybrid Scheduling Framework

The main idea which will be passed in this paper is
a* hybrid scheduling framework incorporating
static and dynamic priority allocation schemes. It
extends the Deadline Monotonic Scheduling (DMS)
that includes a runtime Slack-Aware Priority
Adjuster (SAPA). The most important might
consist of:

(a) Static Base Scheduler: Deadline Monotonic
(bM)

Electronics, Communications, and Computing Summit | Jul

A predictable and analyzable backbone to perform
management of real-time tasks on embedded
systems through the Deadline Monotonic (DM)
scheduling algorithm is proposed to be a part of
the proposed hybrid scheduling algorithm (HSA).
Within the DM policy, the relative deadline is used
to statically determine the priority of the tasks
with the earlier deadlines having higher priorities.
The technique is specifically very efficient at real-
time systems whose task completion periods and
deadlines are either known a priori or otherwise
relatively fixed, as in the case of the critical tasks
T1 (Sensor Acquisition), T, (Preprocessing), and T3
(Fusion). Static prioritization of these time-
sensitive tasks in the DM scheduler assures
deterministic system behavior, reduces deadline
overruns and makes schedulability analysis
tractable by well known response time
expressions. In the proposed system, DM base
scheduler ensures that critical data-processing
activities are not interfered with by less critical
activities such that the temporal integrity of sensor
fusion pipeline is upheld in the proposed system.
Additionally, it is light-weight and high-
performance due to its incompletely-dynamic
character; having only minimal overhead on
runtime, treatment that is desirable in low-power
micro controller environments. Although DM in
isolation is not responsive to workload changes,
this means we have a predictable baseline
behavior on which the dynamic mechanisms,
including the Slack-Aware Priority Adjuster
(SAPA), can be very effective and so allow adaptive

- Sep 2024 93

Dr. Nidhi Mishra et al / Optimization of RTOS Scheduling for Latency-Sensitive Sensor Fusion Systems

responsiveness without invading hard real-time
boundaries.

(b) Slack-Aware Priority Adjuster (SAPA)
Slack-Aware Priority Adjuster (SAPA) is the most
important part of proposed hybrid RTOS
scheduling framework that will make the usage of
CPU improvements and responsiveness of the
system without jeopardizing the timing promises
of critical tasks. A companion to the static
Deadline-Monotonic (DM) scheduler, SAPA is an
on-line algorithm which constantly makes
observational measurements of CPU utilization, job
queue lengths, and deadline-deadtime-delay slack
times, or the difference between when a job is
supposed to end and when it actually does. Under
these observations, SAPA dynamically puts the due
degree of priority of both non-critical (Ts:
Communication/Diagnostics) and supportive (T4
Output/Logging) tasks. As an example, when the
CPU load is not high and there is enough slack,
SAPA can make high-priority background work via
increasing its priority so that the work can be done
in advance. On the other hand, when the system
load is high or the sensor shorts burst, it delays or
replaces them with low priority so that the
processing bandwidth can be turned over to the
critical tasks of data acquisition, preprocessing and
fusion (Ti-T3). Such dynamic redistributing
provides determinism and compliance with the
deadlines of high-priority tasks, and allows
efficient background corresponding to idle
periods. Blending of SAPA enables the system to
accommodate dynamically changing workload,
dispatch tasks (based on their deadlines) and
processor availability and also helps considerable
reduce the probability of priority inversion and
task missing their deadlines, particularly in mixed-
criticality real-time tasks.

(c) Feedback Mechanism
The proposed framework to perform the adaptive
real-time scheduling according to the dynamic

nature of the system considers the works of a
feedback-based control mechanism that runs as
input at runtime. The task of collecting and
analyzing the important system parameters such
as the time of the execution of tasks, the values of
CPU load, the lengths of the tasks queues, and the
delays of inter-task communications is performed
by a dedicated monitoring task that runs
periodically every 100 milliseconds. The most
important aspect of this mechanism is to compute
slack time of each task which is defined as the
difference between the deadline of a task and the
time that it is being carried out to ascertain the
flexibility in the scheduling that is provided in the
framework. Such real-time feedback enables the
scheduler to observe these variations e.g. sensor
bursts, which could temporarily exceed the
computing demand of particular tasks (e.g. high-
frequency IMU updates during fast movement).
When the overall CPU usage reaches the value of
85 percent or more, then the scheduler triggers
mitigation methods, including reducing the
priority of non-essential or facilitating tasks (e.g.
T4: Logging, Ts: Diagnostics) or postponing them
until the beginning of the next cycle. This makes
sure that important tasks (Ti- T3) of acquisition,
preprocessing and fusion are accorded exclusive
access to the CPU to ensure that they fulfill their
real-time constraints. The system is dynamically
responsive to client feedback in terms of latency
minimization and jitter reduction and overall
temporal predictability within environments with
arbitrary, previously unpredictable sensory event
generators, and is therefore a highly desirable
approach to work with in the area of embedded
applications, both in terms of its flexibility to deal
with highly variable workloads, and in safety-
critical applications.

This hybrid approach gives hard real-time
properties to the core fusion pipeline roadmap,
whilst giving flexibility to the background tasks: it
is preferred due to optimal latency of the system,
minimising jitter without violating determinism.

Monitoring Task
(100 ms interval)

Feedback to SAPA
« Gather runtime executioh data

- Compute slack

« Trigger SAPA if CPU load >85%

!

DM Scheduler

+ Assign fixed prior-
ities

« to critical tasks (Ty —
Ta)

!

SAPA
+ Monitor load, queue,
slack
« Reassign non-critical
priorities

RTOS Task Set

T4

Sensor Acquisition| | Preprocessing
(Critical)
Period | Dealline

Slack | Priority

(Critical)
Period | Deadline
Slack | Priority

Ta

Output/Logging
(Supportive)

T3
Output/Logging
(Supportive)
Period | Deadline
Slack | Priority

Communication/

Diagnostics
(Non-Critical)

Period | Deadline| | Period | Deadline

Slack | Priority

Slack | Priority

Figure 4. Hybrid RTOS Scheduling Framework with DM Base and SAPA Runtime Adaptation

94 Electronics, Communications, and Computing Summit | Jul - Sep 2024

Dr. Nidhi Mishra et al / Optimization of RTOS Scheduling for Latency-Sensitive Sensor Fusion Systems

5. Experimental Setup

In order to test the proposed hybrid solution to
scheduling, a real-time embedded testing platform
was made by the utilization of the STM32 Nucleo-
144 development board, which has the
STM32F446RE microcontroller on the basis of the
ARM Cortex-M4 core having its clock frequency
increased up to 180 MHz. This board offers a
perfect compromise between computational
capability and real-time control, and this qualifies
it to be used in verifying time-sensitive sensor
fusion rates. Its sensor set consists of the
MPU6050 that has 6-axis inertial measurement
functions (accelerometer/gyroscope), the NEO-6M
module global positioning system, and the OV7670
CMOS camera module providing a visual input of
data. Such sensors produce heterogeneous data
streams on different frequencies and are
connected to each other through interfaces using I
2 C and UART protocols. The system is set to run
FreeRTOS v10, the tomic rate is set to 1 kHz to
provide fine-grained tuning capabilities, and 10
concurrent active tasks are set so that the
simulated real multitasking environment is

represented. Every component of fusion pipeline,
such as sensor acquisition, preprocessing, EKF-
based fusion, logging, and diagnostics, is separated
into a separate FreeRTOS thread with
communication through message queues and
coordinated using semaphores and mutexes. The
proposed Slack-Aware Priority Adjuster (SAPA)
matched with a Deadline Monotonic (DM)
scheduler is evaluated in the experiment, which
sets the scorecard on the two traditional
scheduling strategies, Fixed-Priority Preemptive
Strategy (FP) and Earliest Deadline First (EDF). A
set of performance measures, including average
task latency, jitter, CPU utilization, and deadline
miss rate is taken under a variety of workload
conditions, both steady-state operation and high-
intensity sensor bursts. This configuration allows
to show in a controlled and still representative
environment the ability of SAPA-enhanced DM
scheduling to increase the responsiveness and
stability of systems to dynamic conditions, making
it suitable to latency-sensitive, real-time embedded
systems.

Table 2. Experimental Configuration and Evaluation Parameters for RTOS-Based Sensor Fusion Testbed

Parameter Value

Microcontroller STM32F446RE (ARM Cortex-M4 @ 180 MHz)
RTOS Version FreeRTOS v10

Tick Rate 1 kHz

Total Active Tasks 10

Sensor Modules

MPU6050, NEO-6M, OV7670

Communication Interfaces

1°C, UART

Compared Schedulers

FP, EDF, DM + SAPA

Evaluation Metrics

Latency, Jitter, CPU Load, Deadline Miss Rate

Test Scenarios

Steady-State, Sensor Burst

6. RESULTS AND DISCUSSION

We can observe a well evident performance
superiority of the introduced hybrid scheduling
scheme (DM + SAPA) to the traditional scheduling
schemes like Fixed-Priority Preemptive Scheduling
(FP) or Earliest Deadline First (EDF) of the
experimental results compiled in Table 3. The
proposed scheduler returns an average fusion
latency of 10.0 ms which is quite lower vis-a-vis
the latencies of 17.2 ms and 14.6 ms respectively
for FP and EDF. This is directly owed to the fact
that the Slack-Aware Priority Adjuster (SAPA) is
the way of runtime flexibility allowing the best-

effort usage of CPU time to critical tasks when
system load accentuates or when sensor bursts are
attempted. Speaking of jitter, or the type of
consistency in the task response times, the
proposed approach provides the variation in just
1.9 ms, as opposed to 4.3 ms (FP) and 3.8 ms
(EDF). The smaller jitter is of especial importance
to sensor fusion applications, where the accurate
synchronization of asynchronous sensor data
streams is significant in terms of precise
estimation based on algorithms like the Extended
Kalman Filter (EKF).

Electronics, Communications, and Computing Summit | Jul - Sep 2024 95

Dr. Nidhi Mishra et al / Optimization of RTOS Scheduling for Latency-Sensitive Sensor Fusion Systems

80

(=]
o

B
o
T

Performance Metrics

20

Fixed-Priority

Avg. Fusion Latency (ms)
mmm Max Jitter (ms)
mmm CPU Utilization (%)

EDF Proposed (DM + SAPA)

Scheduler Type

Figure 6. Performance Comparison of Scheduling Strategies — Average Fusion Latency, Max Jitter, and
CPU Utilization across Fixed-Priority, EDF, and Proposed DM + SAPA Framework

The CPU utilization of the proposed method is also
significantly higher at 87.1% unlike FP at 78.2%
and EDF at 84.5 percent. This is due to the
efficiencies that are promised by the SAPA
mechanism whose ideal operation is the utilization
of otherwise wasted CPU cycles particularly those
windows that allow low priority tasks to run
dynamically control the priorities placed on
different tasks in the run time through the slacks
and the queues. This makes the execution profile

more balanced, with non-critical and support work
(logging or diagnostics) being done in whenever-
possible but not timing-constrained ways. As
compared to the non dynamic scheduling
strategies which tend to leave the CPU resources
idle to maintain deterministic timing, the hybrid
scheduler can adapt to the system changing status
and maintain high performance along with good
real time guarantees.

Table 3. Performance Metrics Comparison of Scheduling Strategies

Scheduler Avg. Fusion | Max Jitter (ms) CPU Utilization (%)
Latency (ms)

Fixed-Priority 17.2 4.3 78.2

EDF 14.6 3.8 84.5

Proposed (DM + SAPA) | 10 1.9 87.1

During stress-test, the system received a 30
percent gauge in the sensor data rates, series ago
simulated burst traffic, due to the IMU and the
camera modules. In that setting, the proposed
framework had a graceful degradation, keeping
average fusion latencies below 20 ms and never
experienced any high-priority deadlines being
missed. Under the same conditions, however, the
FP and EDF schedulers either had lower fusion
accuracy or with an increase in transgression rates
(missed deadlines) because of the lack of load
awareness at run-time and statical prioritization.
These findings confirm the correctness of the idea
of using static Deadline-Monotonic scheduling
together with dynamic SAPA-based priority
assignments to the systems that have a latency-
sensitive nature and operate in a partially
predictable environment, with mixed-criticality.

7. CONCLUSION
In this study, a generic and flexible hybrid
scheduling scheme is proposed that can be used to

optimize real time performance using embedded
sensor fusion systems which are constructed on
Real-Time Operating Systems (RTOS). The
proposed scheme allows combining a static
Deadline Monotonic (DM) scheduling base with a
dynamic Slack-Aware Priority Adjuster (SAPA)
that makes it predictable to execute critical tasks
and dynamically reallocate the CPU resources
relative to the system load and the analysis of the
runtime slacks. The presence of a feedback
mechanism will also make it easier to have the
scheduler hold up to the sensor bursts and vary
loads without sacrificing hard real-time
requirements. The proposed framework shows
that on a FreeRTOS-based STM32-based
embedded platform it is possible to achieve a
considerable improvement in terms of all the main
performance indicators (such as up to 42 percent
decrease in the average fusion latency, 55 percent
decrease in jitter, and a substantial increase in CPU
usage) as compared to more traditional Fixed-
Priority and EDF schedulers. Also the system

96 Electronics, Communications, and Computing Summit | Jul - Sep 2024

Dr. Nidhi Mishra et al / Optimization of RTOS Scheduling for Latency-Sensitive Sensor Fusion Systems

performed gracefully when stressed and this
affirmed the dependability of the same when used
in dynamic settings. The work relates to the larger
community of real-time embedded computing,
which already has some lightweight, portable, and
runtime-adaptive scheduling models, but they,
unlike ours, have been applied to systems with
fewer limited resources. Future isc Directions The
framework can be adapted to multi-core RTOS
environments and to support hardware-assisted
timing monitors and integration with Al-based
workload forecasting models to further improve
efficiency and predictability in safety-critical and
mission-critical systems.

REFERENCES

[1] Stankovic,]J. A. (1988). Misconceptions
about real-time computing: A serious
problem for next-generation systems.
Computer, 21(10), 10-19.

https://doi.org/10.1109/2.72969

[2] Liuy, C. L, &Layland,]. W. (1973). Scheduling
algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM,
20(1), 46-61.
https://doi.org/10.1145/321738.321743

[3] Tan, Y., Mei, K., & Zhang, L. (2022). Impact of
real-time scheduling on multisensor data
fusion performance in embedded robotics.
IEEE Transactions on Industrial Electronics,
69(8), 7542-7551.
https://doi.org/10.1109/TIE.2021.3081902

[4] Zhao, X, & Wu, S. (2021, May). Sensor jitter
compensation in real-time Kalman fusion
systems. In Proceedings of the IEEE
International Conference on Robotics and
Automation (ICRA) (pp. 4233-4238). IEEE.
https://doi.org/10.1109/ICRA48506.2021.
9561662

[5]

(6]

[7]

(8]

[9]

[10]

Wang, Y., Liu, L., & Wu, J. (2023). Adaptive
real-time task scheduling for edge
intelligence: Balancing energy and latency.
IEEE Internet of Things Journal, 10(2), 1043-
1054.
https://doi.org/10.1109/]J10T.2022.322047
8

Kong, M., & Wang, Y. (2020, October). A
hybrid scheduling strategy for
heterogeneous multicore systems in real-
time embedded environments. In
Proceedings of the IEEE International
Conference on Embedded and Ubiquitous
Computing (EUC) (pp. 97-104). IEEE.
https://doi.org/10.1109/EUC50017.2020.0
0025

Audsley, N. C,, Burns, A, Richardson, M. F.,,
&Wellings, A. J. (1993). Applying new
scheduling theory to static priority pre-
emptive scheduling. Software Engineering
Journal, 8(5), 284-292.
https://doi.org/10.1049/s€j.1993.0038
Buttazzo, G. C. (2011). Hard real-time
computing systems: Predictable scheduling
algorithms and applications (3rd ed.).
Springer. https://doi.org/10.1007/978-1-
4419-8110-9

Yadav, D., Tiwari, A., & Saini, P. (2019). Real-
time scheduling for sensor fusion in
autonomous systems using feedback-driven
control. Procedia Computer Science, 152,
369-376.
https://doi.org/10.1016/j.procs.2019.05.01
6

Santos, J., Almeida, L., & Tovar, E. (2014).
Minimizing latency in real-time
communications through traffic shaping and
scheduling. Real-Time Systems, 50(4), 480-
506. https://doi.org/10.1007/s11241-014-
9215-7

Electronics, Communications, and Computing Summit | Jul - Sep 2024 97

