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The use of Multiple-Input Multiple-Output (MIMO) systems with large
number of inputs or outputs, i.e. Massive MIMO (M-MIMO or Massive
MIMO), is a core technology that enables the next generation wireless
networks, which provide significant spectral efficiency and spatial
multiplexing gains. Nevertheless, the high-dimensional signal detection
problem that goes along suggests way too severe computational
expenses specifically in terms of real-time deployment or deployment at
the edges. The proposed paper proposes a package of low-complexity
deep learning architectures to detect challenging signals within the big
MIMO settings by meeting the strict hardware constraints of the same.
We present tractable versions of Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs) as well as CNN-RNN
hybrids, optimized to trade off detection accuracy performance against
minimized computational overhead. These models are trained with
symbol constellations distorted by a progressively different level of
noise per channel together with both Rayleigh fading conditions and
spatially correlated Rayleigh fading scenarios and at different Signal-to-
Noise Ratio (SNR) levels.It is seen through extensive simulations that
the proposed architectures substantially improve over traditional linear
detecting models like Zero-Forcing (ZF) and Minimum Mean Square
Error (MMSE) in terms of Bit Error Rate (BER) and the best performing
(HybridNet) performs more than 85 percent reduction in BER over In
addition, the models are highly scalable to various antenna array setups
and they are not complex enough so that they would be applicable to
real-time anchoring of edge signaling, which is the goal of 5G and future
6G networks. All in all, the work demonstrates a viable route to
incorporating deep learning-based detection in massive MIMO receivers
in terms of improved performance and not at a prohibitive
computational cost.

1. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) is

performance however suffers when there exist
practical channel impairments, multiple-user

becoming a key technology of future wireless
systems promising significant spectral-efficiency,
throughput, and reliability gains as we embrace
spatial diversity through many antenna elements.
These benefits are however achieved at the
expense of extremely large dimensionality of the
system especially when used in uplink systems
since user terminals tend to be limited by
processing power, memory and energy resources.
Under these circumstances, particularly, when in
an edge deployment situation[6], the signal
detection is not easy where any trade-off is made
between detection accuracy and calculation
efficiency. Absolute signal detectors like Zero-
Forcing (ZF) and Minimum Mean Square Error
(MMSE) achieve the reasonable results when there
is no relaxation in propagation condition. Their
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interference and low Signal-to-Noise Ratio (SNR)
environments because of the inherent assumption
and sensitivity to noise amplification. Alternatively,
newer deep learning (DL) applications have
produced powerful tools in the physical layer in
channel estimation, beamforming as well as signal
detection in massive MIMO scenarios [2]. Although
deep neural networks (DNNs) have reported good
performance, they have a high inference latency,
memory requirement and hardware requirement
that makes them unsuitable to latency-sensitive
tasks and other power-constrained systems.

In this regard, this means there is a pressing
requirement in making available low-complexity
deep learning architectures that would be able to
produce resilient performance capable of
operating in a strict In hardware set restraints like
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those that would be likely to characterise next-

generation edge-enabled communications systems.

The primary contributions of this work are as

follows:

e Design three lightweight deep learning
architectures (LightCNN, GRU-Lite, and
HybridNet) optimized for real-time uplink
signal detection in massive MIMO systems.

e Train and evaluate the models under diverse
SNR conditions and realistic fading
environments, including Rayleigh and
spatially correlated Rayleigh fading.

e Demonstrate that the proposed architectures
outperform traditional detectors (ZF MMSE)
in Bit Error Rate (BER) while offering
significantly reduced inference latency
suitable for edge deployment.

2. RELATED WORK

Recent works explored the use of Deep Neural
Networks (DNNs) and Convolutional Neural
Networks (CNNs) in the detection of symbols in
small- and medium-scale MIMO systems with a
relative success in terms of improvements in Bit
Error Rate (BER) and resistance to sub-optimal
channel conditions. Two model-driven deep
learning frameworks DetNet [1] and OAMP-Net [2]
have received a bit of attention to include domain
knowledge signal processing structures in the
trainable neural networks to achieve faster and
easier optimization and also in terms of
interpretability. However, = these  architectures
possess significant computing complexity deep
layers in models and large number of parameters,
which do not make them a primary goal on
resource-constrained edge devices or battery-
powered user terminals in uplink massive MIMO
systems.In addition, the general design and
optimization goals of such architectures are
focused on superior detection performance,
somewhat ignoring Although partial solutions,
including pruning, quantization, and knowledge
distillation have offered model compression
solutions [3], these are not co-designed to
lightweight, special-purpose architectures suitable
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to the massive MIMO regime and they are usually
post-trained on general purpose DNNs. Such
trends further exacerbate the demand of compact
neural architectures that are expected to operate in
real-time and with a small computational and
memory overhead.This paradigm is especially
acute as the requirement is now seeing a surge in
scalable and efficient deep learning-based
receivers able to keep pace with high dimensional
signal detection that must meet the strict demands
of latency and power limits in 5G and beyond
wireless networks. The key to solving this
challenge is to balance out the architectural
complexity as opposed to the accuracy of the
detectiona direction that lies in the heart of the
contribution of this work.

3. System Model

We consider a narrowband uplink massive MIMO
system, where the received signal at the base
station is modeled as:

y=Hx+n

where:

o y€e(CMljs the received signal vector at the base
station with M antennas,

e x€CKljs the transmitted symbol vector from
K single-antenna user terminals,

e He(CMKjs the complex channel matrix
representing flat-fading propagation between
users and the base station, and

e n~CN(0,02]) is the additive white Gaussian
noise vector with zero mean and covariance
matrix o2l, where o2is the noise power.

We assume that we are in a massive MIMO regime (
i.e, M is much greater than the number of user
terminals K, or M >> K ). This asymmetry gives
attractive propagation characteristics in terms of
channel hardening and inter-user orthogonal
asymptotics, which in theory make signal detection
quite simple. Nonetheless, on large-scale systems,
H is high-dimensional which makes the involved
computations tedious, requiring an efficient
detection algorithm, which can operate in real-
time.
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Figure 1. Narrowband Uplink Massive MIMO System Model
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Figure 1: Block diagram illustrating a narrowband
uplink massive MIMO communication system,
where K single-antenna users transmit a symbol
vector x€CK through a flat-fading channel
represented by matrix HECM*K, The base station,
equipped with M antennas (M>K), receives the
signal vector yeCM, affected by additive white
Gaussian noise n~CN(0,02I).

4. Proposed Architectures

Addressing the computational limitations imposed
by the massive MIMO signal detection in real-time
scenario, we suggest and analyze three
designsLightCNN, GRU-Lite, HybridNetand
evaluate each of their lighting deep learning
models in terms of efficient inference and high
signal detection performance. All the models can
provide a tradeoff between complexity and
performance, and may be deployed on edge

devices or user terminals that have little
computing capacity.
e LightCNN

Its architecture is one shallow 1D Convolutional
neural network (CNN) of 2 convolutions and 1
dense output layer. It takes the form of reshaping
the received signal vectors into a matrix and thus it
is optimised towards parallel processing input. The
convolutional layers squeeze out spatial features
due to the channel distorted symbol patterns.
Using downsampled filters (e.g. kernel size = 3,
stride = 2) and ReLU activation, LightCNN attains
few parameters and fast inference without
decrease in classification accuracy.

» GRU-Lite

GRU-Lite is a small unit of recurrent architecture
founded on Gated Recurrent Units (GRUs) that has
been shown to be computationally efficient than
the LSTMs. The model in our design only has one
GRU layer with few hidden units (e.g.,, 3264 units),
this reduces the memory and/or time complexity
of the model. This makes it especially appropriate
to the detection of symbols in temporally
correlated channels, where signals received show
temporal correlations because of Doppler shift or
slow-varying fading. In contrast to full GRU stacks,
the present implementation of reduced stacked
recurrence and reduced complexity of gating
(modeled after other lightweight implementations
of RNNs) [1].

e HybridNet

HybridNet is a combination of the spatial modeling
ability within CNNs with the time dynamics in
GRUs. The input signal is then passed through one
1D convolutional layer to obtain local spatial
features and a GRU layer is used to represent the
time-dependent change in symbols. The nature of a
two-stage algorithm proves HybridNet to be
particularly useful in dynamic fading channels
where the performance is affected both by spatial
correlation and time variation in the channel.
Training and Implementation Details

All of the models are trained through supervised
learning, where they view a symbol detection as a
multi-class classification problem. The loss training
is cross-entropy and categorical and the optimizer
is adam with the following hyperparameters:

Table 1. Training Configuration Parameters for Lightweight Deep Learning Models
Parameter Value
Learning rate 0.001
Batch size 128
Epochs 50
Activation functions | ReLU (CNN), Tanh (GRU)
Optimizer Adam
Dropout 0.2 (between layers)
Weight Initialization | Xavier/Glorot uniform

The training data set is comprised of artificially
creatable samples of signal depending on
techniques of QPSK and 16-QAM modulation,
regimens in Rayleigh and Rician fading channels
having Signal-to-Noise Ratios (SNRs) that vary
between 0 and 30dB. Individual samples hold real

and imaginary components of the retrieved signals
in form of a 2D array. Such a training process
achieves generalization of an extremely wide range
of propagation conditions normally experienced in
uplink massive MIMO networks.

Table 2. Summary of Proposed Architectures

Model Layers Input Shape | Parameters | Activation Output
LightCNN ConvlD — ReLU — ConvlD | (K, 2) ~18K ReLU Softmax(M-ary
- Dense classification)
GRU-Lite GRU (1 layer, 64 units) — | (K 2) ~30K Tanh Softmax (M-ary
Dense classification)
HybridNet | ConvlD — ReLU — GRU - | (K 2) ~50K ReLU + Tanh Softmax (M-ary
Dense classification)
116
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Figure 2. Architectural Designs of Lightweight Deep Learning Models for Real-Time Signal Detection in
Massive MIMO Systems

This figure shows the proposed architectures of
lightweight LightCNN, GRU-Lite and HybridNetto
be an effective signal detection in large-scale MIMO
uplink systems. LightCNN employs shallow
convolutional layers on extracting spatial features;
GRU- Lite employs lightweight recurrent structure
that employs one GRU layer to extract temporal
dependencies and HybridNet models spatial-time
variations well under the varying channel
conditions by integrating both GRU and the CNN
layers.

5. Performance Evaluation

5.1 Simulation Setup

The effectiveness of the suggested lightweight
detection architectures was severely tested
through intensive simulations with a synthetic
dataset made to support massive MIMO uplink

systems. The analysis was directed on two
exemplary modulation groupingsQPSK and 16-
QAMin two BS antenna-to-user positions (64 x 16
and 128 x 32, simulating medium to large scale
MIMO conditions). All of the wireless channel was
simulated under Rayleigh and Rician fading, and all
of the simulation was done considering an SNR
range between 0 and 30 dB so that the simulated
wireless channel could be robust in various
propagation situations.A total of 200,000 samples
were created to train together with 50,000 samples
to test the results. Every sample involved the
vector of the obtained signal and the transmitted
symbols tags. TF 2.10 based training and inference
was performed with GPU acceleration (NVIDIA
RTX 3060 platform).

5.2 Results and Analysis

Table 3. Comparative Performance of Classical and Lightweight Detection Models at 10 dB SNR (QPSK)

Detector BER @ 10 dB (QPSK) | Avg. Inference Time (ms)
ZF 2.1x1072 0.10
MMSE 1.8 x 1072 0.12
LightCNN | 4.7 x 1073 0.08
GRU-Lite 3.2x1073 0.11
HybridNet | 2.9 x 1073 0.10

Conventional linear detectorsZero-Forcing (ZF)
and Minimum Mean Square Error (MMSE)perform
rather poorly in the context of the BER values at 10
dB, which should be somewhat seen as a sign of
ineffective performance of these models under the
challenge of noisy channels. The suggested
lightweight deep learning-based detectors have big
BER gains. It is worth mentioning that LightCNN
encounters the smallest inference time (0.08 ms),
which makes it ideal in applications that require
real-time low-latency. In the meantime, GRU-Lite
outperforms all the other models because it learns

temporal dependencies at the cost of being
seemingly slower (3.2 x 1014 3 15 ) to derive the
result.However, HybridNet is the overall winner as
it offers the least BER (2.9 1014 15 15 ) + the
shortest inference time (0.10 ms). This implies
synergetic advantage of an integration of spatial
and temporal modeling approaches. Therefore,
HybridNet has the most balanced and stable
network structure to be deployed at the edge in
massive MIMO networks, dynamic and resource-
constrained environments in particular.
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Figure 3. BER vs. SNR Comparison for Various Detection Models in Massive MIMO Uplink Systems

Figure 3: Bit Error Rate performance across
varying SNR levels (0-30 dB) under Rayleigh and
Rician fading for ZF MMSE, LightCNN, GRU-Lite,
and HybridNet detectors. The proposed deep
learning models show substantial gains in
accuracy, particularly in low-to-moderate SNR
conditions.

6. DISCUSSION

The effectiveness of the proposed low-complexity
deep learning (DL) architectures to surpass
conventional linear architectures namely Zero-
Forcing (ZF) and Minimum Mean Square Error
(MMSE) at moderate-to-high SNRs is supported by
the results in the experiment. Both have proven to
have good generalization capacity in varying
channel conditions such as Rayleigh and Rician
fading channels and are able to maintain low
latency in inferences to make them highly desirable
as candidates in implementing tools in a real-time
system with massive MIMO. It is worth remarking
that the GRU-Lite architecture utilises the time
series modelling ability to enhance the detection
performance in time dependent channels whereas
the HybridNet model uses an appropriate
combination of spatial and time features extraction
in order to provide consistent and good detection
performance across a wide SNR ranges. Moreover,
the models are resistant to estimation errors of
channel estimators in that they continue to provide
low BER even in the presence of moderate channel
estimation errors, and once again supports its
applicability to CSI acquisition environment where
estimation errors are inevitable. In theoretical
perspective, methods like mapping input feature
contributions to output decisions through layers in
CNNs have demonstrated potential in explaining
how Al can be wuseable, albeit in wireless
communication systems. Although the findings are
encouraging, it is necessary to note that the
existing assessments are based on controlled
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simulation sets of data. Further work will focus on
the implementation and testing of over-the-air
validation and experimentation in hardware-in-
the-loop testbeds as a means of evaluating
deployment and deployment in the real-world
complex and interference-rich wireless systems.

7. CONCLUSION AND FUTURE WORK
In this paper we presented stateful tested a family
of complex simplicity deep learning (DL)
networksLightCNN, GRU-Lite, and HybridNetas
real-time signal detector in an uplink massive
MIMO system. The suggested models showed a
better performance regarding the Bit Error Rate
(BER) and inference efficiency than machineries of
classical linear detectors like the Zero-Forcing (ZF)
and Minimum Mean Square Error (MMSE) at least
with varying SNR and harsh fading conditions. It is
interesting to note that HybridNet performed with
a greater than 85% at 10 dB SNR and sub-
millisecond inference latency highlighting its
suitability to be deployed in wireless systems with
a strong requirement regarding latency
guarantees. These increases in performance
confirm the viability of the DL-based treatment
strategies to fulfill the twin requirements of
precision and computation affordability in the
next-generation wireless systems.

Future research directions include:

e Hardware prototyping via FPGA-based
deployment to validate real-time latency,
energy efficiency, and scalability.

e Model compression techniques such as
pruning, quantization, and knowledge
distillation to facilitate low-power hardware
acceleration.

e Extension to OFDM-based multi-carrier
frameworks, enabling broader applicability in
5G and beyond-5G broadband systems.

e Joint optimization with channel estimation
and precoding strategies, to improve end-to-
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end physical layer performance in dynamic
environments.
Additionally, real-world validation through over-
the-air experimentation and channel emulation
testbeds will be essential to bridge the gap
between simulation-based evaluation and practical
deployment.
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