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 The use of Multiple-Input Multiple-Output (MIMO) systems with large 
number of inputs or outputs, i.e. Massive MIMO (M-MIMO or Massive 
MIMO), is a core technology that enables the next generation wireless 
networks, which provide significant spectral efficiency and spatial 
multiplexing gains. Nevertheless, the high-dimensional signal detection 
problem that goes along suggests way too severe computational 
expenses specifically in terms of real-time deployment or deployment at 
the edges. The proposed paper proposes a package of low-complexity 
deep learning architectures to detect challenging signals within the big 
MIMO settings by meeting the strict hardware constraints of the same. 
We present tractable versions of Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs) as well as CNN-RNN 
hybrids, optimized to trade off detection accuracy performance against 
minimized computational overhead. These models are trained with 
symbol constellations distorted by a progressively different level of 
noise per channel together with both Rayleigh fading conditions and 
spatially correlated Rayleigh fading scenarios and at different Signal-to-
Noise Ratio (SNR) levels.It is seen through extensive simulations that 
the proposed architectures substantially improve over traditional linear 
detecting models like Zero-Forcing (ZF) and Minimum Mean Square 
Error (MMSE) in terms of Bit Error Rate (BER) and the best performing 
(HybridNet) performs more than 85 percent reduction in BER over In 
addition, the models are highly scalable to various antenna array setups 
and they are not complex enough so that they would be applicable to 
real-time anchoring of edge signaling, which is the goal of 5G and future 
6G networks. All in all, the work demonstrates a viable route to 
incorporating deep learning-based detection in massive MIMO receivers 
in terms of improved performance and not at a prohibitive 
computational cost. 
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1. INTRODUCTION 
Massive Multiple-Input Multiple-Output (MIMO) is 
becoming a key technology of future wireless 
systems promising significant spectral-efficiency, 
throughput, and reliability gains as we embrace 
spatial diversity through many antenna elements. 
These benefits are however achieved at the 
expense of extremely large dimensionality of the 
system especially when used in uplink systems 
since user terminals tend to be limited by 
processing power, memory and energy resources. 
Under these circumstances, particularly, when in 
an edge deployment situation[6], the signal 
detection is not easy where any trade-off is made 
between detection accuracy and calculation 
efficiency. Absolute signal detectors like Zero-
Forcing (ZF) and Minimum Mean Square Error 
(MMSE) achieve the reasonable results when there 
is no relaxation in propagation condition. Their 

performance however suffers when there exist 
practical channel impairments, multiple-user 
interference and low Signal-to-Noise Ratio (SNR) 
environments because of the inherent assumption 
and sensitivity to noise amplification. Alternatively, 
newer deep learning (DL) applications have 
produced powerful tools in the physical layer in 
channel estimation, beamforming as well as signal 
detection in massive MIMO scenarios [2]. Although 
deep neural networks (DNNs) have reported good 
performance, they have a high inference latency, 
memory requirement and hardware requirement 
that makes them unsuitable to latency-sensitive 
tasks and other power-constrained systems. 
In this regard, this means there is a pressing 
requirement in making available low-complexity 
deep learning architectures that would be able to 
produce resilient performance capable of 
operating in a strict In hardware set restraints like 
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those that would be likely to characterise next-
generation edge-enabled communications systems. 
The primary contributions of this work are as 
follows: 
 Design three lightweight deep learning 

architectures (LightCNN, GRU-Lite, and 
HybridNet) optimized for real-time uplink 
signal detection in massive MIMO systems. 

 Train and evaluate the models under diverse 
SNR conditions and realistic fading 
environments, including Rayleigh and 
spatially correlated Rayleigh fading. 

 Demonstrate that the proposed architectures 
outperform traditional detectors (ZF, MMSE) 
in Bit Error Rate (BER) while offering 
significantly reduced inference latency 
suitable for edge deployment. 

 
2. RELATED WORK 
Recent works explored the use of Deep Neural 
Networks (DNNs) and Convolutional Neural 
Networks (CNNs) in the detection of symbols in 
small- and medium-scale MIMO systems with a 
relative success in terms of improvements in Bit 
Error Rate (BER) and resistance to sub-optimal 
channel conditions. Two model-driven deep 
learning frameworks DetNet [1] and OAMP-Net [2] 
have received a bit of attention to include domain 
knowledge signal processing structures in the 
trainable neural networks to achieve faster and 
easier optimization and also in terms of 
interpretability.However, these architectures 
possess significant computing complexity deep 
layers in models and large number of parameters, 
which do not make them a primary goal on 
resource-constrained edge devices or battery-
powered user terminals in uplink massive MIMO 
systems.In addition, the general design and 
optimization goals of such architectures are 
focused on superior detection performance, 
somewhat ignoring Although partial solutions, 
including pruning, quantization, and knowledge 
distillation have offered model compression 
solutions [3], these are not co-designed to 
lightweight, special-purpose architectures suitable 

to the massive MIMO regime and they are usually 
post-trained on general purpose DNNs. Such 
trends further exacerbate the demand of compact 
neural architectures that are expected to operate in 
real-time and with a small computational and 
memory overhead.This paradigm is especially 
acute as the requirement is now seeing a surge in 
scalable and efficient deep learning-based 
receivers able to keep pace with high dimensional 
signal detection that must meet the strict demands 
of latency and power limits in 5G and beyond 
wireless networks. The key to solving this 
challenge is to balance out the architectural 
complexity as opposed to the accuracy of the 
detectiona direction that lies in the heart of the 
contribution of this work. 
 
3. System Model 
We consider a narrowband uplink massive MIMO 
system, where the received signal at the base 
station is modeled as: 
y=Hx+n 
where: 
 y∈CM×1is the received signal vector at the base 

station with M antennas, 
 x∈CK×1is the transmitted symbol vector from 

K single-antenna user terminals, 
 H∈CM×Kis the complex channel matrix 

representing flat-fading propagation between 
users and the base station, and 

 n∼CN(0,σ2I) is the additive white Gaussian 
noise vector with zero mean and covariance 
matrix σ2I, where σ2 is the noise power. 

We assume that we are in a massive MIMO regime ( 
i.e., M is much greater than the number of user 
terminals K, or M >> K ). This asymmetry gives 
attractive propagation characteristics in terms of 
channel hardening and inter-user orthogonal 
asymptotics, which in theory make signal detection 
quite simple. Nonetheless, on large-scale systems, 
H is high-dimensional which makes the involved 
computations tedious, requiring an efficient 
detection algorithm, which can operate in real-
time. 

 

 
Figure 1. Narrowband Uplink Massive MIMO System Model 
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Figure 1: Block diagram illustrating a narrowband 
uplink massive MIMO communication system, 
where K single-antenna users transmit a symbol 
vector x∈CK through a flat-fading channel 
represented by matrix H∈CM×K. The base station, 
equipped with M antennas (M≫K), receives the 
signal vector y∈CM, affected by additive white 
Gaussian noise n∼CN(0,σ2I). 
 
4. Proposed Architectures 
Addressing the computational limitations imposed 
by the massive MIMO signal detection in real-time 
scenario, we suggest and analyze three 
designsLightCNN, GRU-Lite, HybridNetand 
evaluate each of their lighting deep learning 
models in terms of efficient inference and high 
signal detection performance. All the models can 
provide a tradeoff between complexity and 
performance, and may be deployed on edge 
devices or user terminals that have little 
computing capacity. 
• LightCNN 
Its architecture is one shallow 1D Convolutional 
neural network (CNN) of 2 convolutions and 1 
dense output layer. It takes the form of reshaping 
the received signal vectors into a matrix and thus it 
is optimised towards parallel processing input. The 
convolutional layers squeeze out spatial features 
due to the channel distorted symbol patterns. 
Using downsampled filters (e.g. kernel size = 3, 
stride = 2) and ReLU activation, LightCNN attains 
few parameters and fast inference without 
decrease in classification accuracy. 

• GRU-Lite 
GRU-Lite is a small unit of recurrent architecture 
founded on Gated Recurrent Units (GRUs) that has 
been shown to be computationally efficient than 
the LSTMs. The model in our design only has one 
GRU layer with few hidden units (e.g., 3264 units), 
this reduces the memory and/or time complexity 
of the model. This makes it especially appropriate 
to the detection of symbols in temporally 
correlated channels, where signals received show 
temporal correlations because of Doppler shift or 
slow-varying fading. In contrast to full GRU stacks, 
the present implementation of reduced stacked 
recurrence and reduced complexity of gating 
(modeled after other lightweight implementations 
of RNNs) [1]. 
• HybridNet 
HybridNet is a combination of the spatial modeling 
ability within CNNs with the time dynamics in 
GRUs. The input signal is then passed through one 
1D convolutional layer to obtain local spatial 
features and a GRU layer is used to represent the 
time-dependent change in symbols. The nature of a 
two-stage algorithm proves HybridNet to be 
particularly useful in dynamic fading channels 
where the performance is affected both by spatial 
correlation and time variation in the channel. 
Training and Implementation Details 
All of the models are trained through supervised 
learning, where they view a symbol detection as a 
multi-class classification problem. The loss training 
is cross-entropy and categorical and the optimizer 
is adam with the following hyperparameters: 

 
Table 1. Training Configuration Parameters for Lightweight Deep Learning Models 

Parameter Value 
Learning rate 0.001 
Batch size 128 
Epochs 50 
Activation functions ReLU (CNN), Tanh (GRU) 
Optimizer Adam 
Dropout 0.2 (between layers) 
Weight Initialization Xavier/Glorot uniform 

 
The training data set is comprised of artificially 
creatable samples of signal depending on 
techniques of QPSK and 16-QAM modulation, 
regimens in Rayleigh and Rician fading channels 
having Signal-to-Noise Ratios (SNRs) that vary 
between 0 and 30dB. Individual samples hold real 

and imaginary components of the retrieved signals 
in form of a 2D array. Such a training process 
achieves generalization of an extremely wide range 
of propagation conditions normally experienced in 
uplink massive MIMO networks. 

 
Table 2. Summary of Proposed Architectures 

Model Layers Input Shape Parameters Activation Output 
LightCNN Conv1D → ReLU → Conv1D 

→ Dense 
(K, 2) ~18K ReLU Softmax(M-ary 

classification) 
GRU-Lite GRU (1 layer, 64 units) → 

Dense 
(K, 2) ~30K Tanh Softmax (M-ary 

classification) 
HybridNet Conv1D → ReLU → GRU → 

Dense 
(K, 2) ~50K ReLU + Tanh Softmax (M-ary 

classification) 
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Figure 2. Architectural Designs of Lightweight Deep Learning Models for Real-Time Signal Detection in 

Massive MIMO Systems 
 
This figure shows the proposed architectures of 
lightweight LightCNN, GRU-Lite and HybridNetto 
be an effective signal detection in large-scale MIMO 
uplink systems. LightCNN employs shallow 
convolutional layers on extracting spatial features; 
GRU- Lite employs lightweight recurrent structure 
that employs one GRU layer to extract temporal 
dependencies and HybridNet models spatial-time 
variations well under the varying channel 
conditions by integrating both GRU and the CNN 
layers. 
 
5. Performance Evaluation 
5.1 Simulation Setup 
The effectiveness of the suggested lightweight 
detection architectures was severely tested 
through intensive simulations with a synthetic 
dataset made to support massive MIMO uplink 

systems. The analysis was directed on two 
exemplary modulation groupingsQPSK and 16-
QAMin two BS antenna-to-user positions (64 x 16 
and 128 x 32, simulating medium to large scale 
MIMO conditions). All of the wireless channel was 
simulated under Rayleigh and Rician fading, and all 
of the simulation was done considering an SNR 
range between 0 and 30 dB so that the simulated 
wireless channel could be robust in various 
propagation situations.A total of 200,000 samples 
were created to train together with 50,000 samples 
to test the results. Every sample involved the 
vector of the obtained signal and the transmitted 
symbols tags. TF 2.10 based training and inference 
was performed with GPU acceleration (NVIDIA 
RTX 3060 platform). 
 
5.2 Results and Analysis 

 
Table 3. Comparative Performance of Classical and Lightweight Detection Models at 10 dB SNR (QPSK) 

Detector BER @ 10 dB (QPSK) Avg. Inference Time (ms) 
ZF 2.1 × 10⁻² 0.10 
MMSE 1.8 × 10⁻² 0.12 
LightCNN 4.7 × 10⁻³ 0.08 
GRU-Lite 3.2 × 10⁻³ 0.11 
HybridNet 2.9 × 10⁻³ 0.10 

 
Conventional linear detectorsZero-Forcing (ZF) 
and Minimum Mean Square Error (MMSE)perform 
rather poorly in the context of the BER values at 10 
dB, which should be somewhat seen as a sign of 
ineffective performance of these models under the 
challenge of noisy channels. The suggested 
lightweight deep learning-based detectors have big 
BER gains. It is worth mentioning that LightCNN 
encounters the smallest inference time (0.08 ms), 
which makes it ideal in applications that require 
real-time low-latency. In the meantime, GRU-Lite 
outperforms all the other models because it learns 

temporal dependencies at the cost of being 
seemingly slower (3.2 × 1014 3 15 ) to derive the 
result.However, HybridNet is the overall winner as 
it offers the least BER (2.9 1014 15 15 ) + the 
shortest inference time (0.10 ms). This implies 
synergetic advantage of an integration of spatial 
and temporal modeling approaches. Therefore, 
HybridNet has the most balanced and stable 
network structure to be deployed at the edge in 
massive MIMO networks, dynamic and resource-
constrained environments in particular. 
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Figure 3. BER vs. SNR Comparison for Various Detection Models in Massive MIMO Uplink Systems 

 
Figure 3: Bit Error Rate performance across 
varying SNR levels (0–30 dB) under Rayleigh and 
Rician fading for ZF, MMSE, LightCNN, GRU-Lite, 
and HybridNet detectors. The proposed deep 
learning models show substantial gains in 
accuracy, particularly in low-to-moderate SNR 
conditions. 
 
6. DISCUSSION 
The effectiveness of the proposed low-complexity 
deep learning (DL) architectures to surpass 
conventional linear architectures namely Zero-
Forcing (ZF) and Minimum Mean Square Error 
(MMSE) at moderate-to-high SNRs is supported by 
the results in the experiment. Both have proven to 
have good generalization capacity in varying 
channel conditions such as Rayleigh and Rician 
fading channels and are able to maintain low 
latency in inferences to make them highly desirable 
as candidates in implementing tools in a real-time 
system with massive MIMO. It is worth remarking 
that the GRU-Lite architecture utilises the time 
series modelling ability to enhance the detection 
performance in time dependent channels whereas 
the HybridNet model uses an appropriate 
combination of spatial and time features extraction 
in order to provide consistent and good detection 
performance across a wide SNR ranges. Moreover, 
the models are resistant to estimation errors of 
channel estimators in that they continue to provide 
low BER even in the presence of moderate channel 
estimation errors, and once again supports its 
applicability to CSI acquisition environment where 
estimation errors are inevitable. In theoretical 
perspective, methods like mapping input feature 
contributions to output decisions through layers in 
CNNs have demonstrated potential in explaining 
how AI can be useable, albeit in wireless 
communication systems. Although the findings are 
encouraging, it is necessary to note that the 
existing assessments are based on controlled 

simulation sets of data. Further work will focus on 
the implementation and testing of over-the-air 
validation and experimentation in hardware-in-
the-loop testbeds as a means of evaluating 
deployment and deployment in the real-world 
complex and interference-rich wireless systems. 
 
7. CONCLUSION AND FUTURE WORK 
In this paper we presented stateful tested a family 
of complex simplicity deep learning (DL) 
networksLightCNN, GRU-Lite, and HybridNetas 
real-time signal detector in an uplink massive 
MIMO system. The suggested models showed a 
better performance regarding the Bit Error Rate 
(BER) and inference efficiency than machineries of 
classical linear detectors like the Zero-Forcing (ZF) 
and Minimum Mean Square Error (MMSE) at least 
with varying SNR and harsh fading conditions. It is 
interesting to note that HybridNet performed with 
a greater than 85% at 10 dB SNR and sub-
millisecond inference latency highlighting its 
suitability to be deployed in wireless systems with 
a strong requirement regarding latency 
guarantees. These increases in performance 
confirm the viability of the DL-based treatment 
strategies to fulfill the twin requirements of 
precision and computation affordability in the 
next-generation wireless systems. 
Future research directions include: 
 Hardware prototyping via FPGA-based 

deployment to validate real-time latency, 
energy efficiency, and scalability. 

 Model compression techniques such as 
pruning, quantization, and knowledge 
distillation to facilitate low-power hardware 
acceleration. 

 Extension to OFDM-based multi-carrier 
frameworks, enabling broader applicability in 
5G and beyond-5G broadband systems. 

 Joint optimization with channel estimation 
and precoding strategies, to improve end-to-
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end physical layer performance in dynamic 
environments. 

Additionally, real-world validation through over-
the-air experimentation and channel emulation 
testbeds will be essential to bridge the gap 
between simulation-based evaluation and practical 
deployment. 
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