
    1 Electronics, Communications, and Computing Summit | Oct - Dec 2024 

 

Electronics, Communications, and Computing Summit                                   

Vol. 2, No. 4, Oct - Dec 2024, pp. 1-11 

DOI: https://doi.org/10.17051/ECC/02.04.01                                                                                                                                                                                               

  

 

 
 

Multi-Objective Evolutionary Algorithms for AI-Accelerated 
Sub-5 nm Floorplanning 

 

Noel Unciano1, Amina El-Fahmy2 
 

1Environment and Biotechnology Division- Industrial Technology Development Institute, Philippines 
Email: nmuetmicro@gmail.com 

2School of Computer Science, Universidad Nacional de Colombia, Colombia. 
 

Article Info 
 

ABSTRACT  

Article history: 

Received : 10.10.2024 
Revised    : 12.11.2024 
Accepted  : 14.12.2024 

 

 In the VLSI physical design with sub-5 nm process technologies in view, 
wherein considered goals such as chip area, interconnect timing, power 
consumption and thermal integrity become irrevocably intertwined into 
the mix, the area of such a search grows exponentially as well making 
the task of effective floorplanning one that requires a solution that 
balances opposing goals. In the first stage, AI-MOEA-FP is a hybrid 
framework based on the Graph Neural Network (GNN) surrogate model 
and the latest state-of-the-art multi-objective evolutionary algorithm, 
NSGA-II, to provide faster exploration of the Pareto-front relative to 
floorplanning tasks in the 5nm radius and below. To begin with, a small 
slicing-tree genotype contains in its genes each of the modules of 
candidates by their position and orientation. Second, instead of running 
a complete EDA flow per evaluation, our GNN surrogate which has been 
trained on 50,000 industry-level floorplans can quickly approximate 4 
fitness metrics (total area, estimated worst-case signal delay, peak 
power density, and maximum thermal deviation) with less than 3% 
mean error absolute. Third, we implement a strategy that makes use of a 
certain degree of confidence: low-uncertainty candidates and those 
close to the evolving Pareto front are re-scored with the golden-engine 
to remove any surrogate bias, whereas the rest will just use the GNN, 
saving costly engine calls by about 70 percent.On three suites of 
benchmarks (ISPD stay including five circuits of 20-50 modules each 
and two resized MCNC designs), AI-MOEA-FP converges to high-quality 
Pareto fronts in a speed more than The proof of our ablation studies 
shows that the surrogate and confidence filter are needed: canceling one 
of these leads up to 6 percent reduction or nearly 2 times the runtime of 
final solution quality.AI-MOEA-FP demonstrates that it is possible to use 
AI to guide the evolution of physical design with high confidence in 
resulting quality with one hundred times less cost in evaluation by using 
the surrogate, resulting in a full path towards AI-guided physical design 
in future technology nodes. Adaptive online retraining of new floorplan 
patterns and heterogeneous integration of standard cells, macros and 
soft IP blocks are planned in the future. 
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1. INTRODUCTION 
Incessant scaling of the CMOS integrated circuit to 
below 5 nm node has transformed the computing 
performance and power consumption, but it has 
also presented stalwart challenges in VLSI physical 
design. Interconnect wire resistance and process 
variation increases exponentially at these 
dimensions resulting in timing uncertainty and 
signal integrity challenges. Meanwhile the highly 
integrated transistors introduce local thermal hot 
spots that are permitted to exceed material 
reliability limits, and continuing power constraints 
require designs that sensitively trade off leakage 
power and switching power demands. Here, 
floorplanning, the problem of divid the chip area 

between the functional blocks and of arranging 
them with respect with each other, becomes a 
major establishing block: as the number of 
modules increases, the search space becomes 
combinatorial, and soon becomes intractable when 
even two objectives (such area and timing) are 
considered. 
The usual design flows of the EDA traditionally 
focus on physical design purposes in isolation. 
Single-objective placement at older nodes has been 
shown to be successful with simulated annealing 
and with partition-driven methods, though timing 
or congestion can be optimized with analytic 
solutions (quadratic programming or linear 
programming) with area fixed. They are based 
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however on hand-tuned cost functions or 
weightings that provide little information about 
the actual Pareto trade-offs and necessitate large 
parameter sweeps. Consequently, addressing the 
full design space of optimum area, timing, power, 
and thermal requirements of sub-5 nm designs 
requires such a more adaptable and multi-goal 
approach. 
Multi-Objective Evolutionary Algorithms (MOEAs) 
including NSGA-II have become the effective tools 
that can shed more light on Pareto fronts that 
occur across incompatible measures. Making use of 
nondominated sorting and by ensures that there is 
sufficient diversity among candidate solutions, 
NSGA-II has the capability to optimize many 
objectives simultaneously without prior 
specification of any weighting factors. The Achilles 
heel of MOEAs in VLSI remains the cost of fitness 
evaluation: calling a commercial physical-design 
engine takes tens of seconds to minutes in order to 
compute accurate area, wirelength, timing slack, 
power density, and thermal profiles of each 
individual specimen, and this is far too slow to 
afford realistic chips in practice. 
Fortunately, recent advances in machine learning 
machine learning- Graph Neural Networks (GNNs) 
trained on compact graphical encodings of partial 
floorplans provide a solution to this by learning 
surrogate models that can be used to obtain core 
physical metrics. Surrogates trained to a large 
corpus of engine tested layouts can estimate 
wirelength, congestion, power distributions, and 
even thermally hot spots in milliseconds, and with 
mean absolute errors commonly less than 3%. 
Incorporation of such GNN surrogates into the 
MOEA loop allows a fast preliminary assessment of 
the poor designs to remove them and a cost-
effective effort is confined to the most plausible 
designs. 
This is hence our contribution, a hybrid 
framework, AI-MOEA-FP that combines the 
exploration capabilities of the NSGA-II with the 
rapidity of surrogate assessment provided by 
GNNs. Candidate floorplans are represented as a 
concise binary slicing tree that is consumed by a 
five-layer GNN together with module area and 
aspect-ratio information, as well as direct 
adjacency information, to produce prediction 
errors of less than 3% and within 5 ms of the four 
most important objectives (total area, worst-case 
delay, peak power density, and maximum thermal 
deviation). In order to provide fidelity to the 
surrogates, we use a confidence-based hybrid 
assessment: prediction uncertainty is estimated 
using Monte Carlo dropout, and only candidates 
with low prediction uncertainty or lying on the 
growing Pareto front are re-evaluated using the 
high-fidelity EDA engine, and all the rest are  

evaluated using only the GNN and thus amount of 
calls to the high-fidelity engine decreased by 
approximately 70 percent without affecting 
solution quality. We compare and evaluate AI-
MOEA-FP against three industrial-grade sample 
benchmark suites comprising sub-5 nm (ISPD 
2019 with 5 ASIC-scale circuits, and 2 upscaled 
MCNC block designs) against two baselines 
consisting of vanilla NSGA-II and simulated 
annealing in terms of convergence speed-up by 4x, 
and area-time hypervolume increase by 10-15 
percent. 
The AI-MOEA-FP framework may be used in a 
broad range of physical-design applications: it 
speeds floorplanning of System-on-Chip (SoC) 
systems by rapidly exploring configurations of 
compute, memory, I/O blocks under aggressive 
area and thermal constraints; it supports 3D-IC 
and heterogeneous integration by co-optimizing 
layer stacking and through-silicon-via (TSV) 
placement to balance thermal and minimize 
interconnect requirements; it aids configurable IP-
block integration by quickly scoping across and 
evaluation of alternative macro-cell configurations 
(e.g., DSPs Combining AI-driven surrogates and 
powerful evolutionary search, AI-MOEA-FP leaves 
the designers capable of exploring the 
multidimensional trade-off space of sub-5nm VLSI 
in hours instead of days. 
 
2. RELATED WORK 
2.1 Deterministic and Heuristic Floorplanning 
The most common techniques of traditional 
approach to floorplanning involve analytic and 
heuristic approaches. Weighted sum Simulated 
annealing (SA) frameworks model floorplan cost as 
a weighted combination of floorplan objectives-
typically area, wirelength and aspect ratio; they 
make stochastic moves on a representation such as 
slicing-tree or sequence-pair to explore the space 
of minimum-cost floorplans [3]. Although SA is 
able to give high quality single-objective 
optimizations, carefully tuned temperature 
schedules, the weight of the cost-functions make 
the multi-objective extensions brittle: the designer 
must first tune the weighting of objectives by hand, 
and often sacrifices Pareto diversity in pursuit of a 
few favourite weight sets. There exist analytic 
placement methods in which timing and 
congestion are formulated as quadratic or linear 
programs and thus can be optimized rapidly via a 
gradient based method under area constraints that 
are treated as constants [4]. Nevertheless, these 
approaches are not ideal when objectives are 
highly incompatible (i.e. when area and thermal 
compliance objectives disagree), and they are not 
inherently optimal unless bifurcated repeatedly 
with different parameter values. 
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2.2 Evolutionary Algorithms in Physical Design 
Highlights Multi‐Objective Evolutionary Algorithms 
(MOEAs) mitigate these restrictions as they 
concurrently evolve populations of prospective 
layouts without necessarily calling for productivity 
assignments that have been fixed in advance. The 
caption of Deb et al., NSGA-II algorithm, employs 
nondominated sorting and crowding-distance 
selection, which ensures a diverse Pareto front in 
terms of multiple objectives [1]. In VLSI 
floorplanning, NSGA-II has been used to 
co‐optimize chip area, interconnect delay and 
power with good results compared to weighted-
sum SA in terms of diversity and quality of trade-
offs [5]. However, every iteration of the MOEA 
would typically call a complete EDA engine to 
compute accurate values: particularly timing slack 
and temperature distributions, so times go into the 
days range for industrial scale PEs with advanced 
nodes. Ramifications to lower this cost through 
incremental evaluation or top-down coarse-
grained engines have limited effect of speeding up 
evaluations and may suffer evaluation bias that 
lowers accuracy of final solutions. 
 
2.3 Machine‐Learning Surrogates for EDA 
Recent machine‐learning methods provide an 
alternative to learning high‐fidelity surrogates of 
EDA tool outputs, rapidly. Graph Neural Networks 
(GNNs) in particular, represent an area where the 
netlist and a floorplan can be naturally modeled as 
graphs, and then metrics (such as the total 
wirelength and congestion) can be predicted as 
mean absolute errors less than 5 percent on 
held‐out designs [6]. On the same note, 
convolutional methods that have already been 
conditioned with floorplan images and proximity-
thermal heat maps will be able to predict hot spot 
patterns in a matter of milliseconds [7]. 
Surrogate‐guided MOEAs are used outside VLSI, 
where they have hastened optimization in 
mechanical design and bioinformatics by 
discarding unpromising candidates prior to more 
costly finite‐element or sequence‐alignment 
analysis. Nonetheless, there are the unique 
challenges associated with such surrogates when 
integrated into VLSI MOEAs: their prediction 
uncertainty should be handled to avoid the drift 
with regards to veritable Pareto fronts, and they 
need to account in detail the complex 
dependencies of current sub-5 nm processes. 
Although the usefulness of GNN surrogates 
towards estimating placement quality has been 
previously shown in preliminary studies, little has 
been done to incorporate them into an 
evolutionary framework with confidence 
consideration of floorplane entire multi-objective 
programming, and AI-MOEA-FP has a strong case 
to fill that gap. 

3. Preliminaries 
3.1 Problem Formulation 
The bare minimum is that the floorplanning 
problem of a netlist N having modules M={m1, …, 
mn} is one trying to answer the question of not just 
the spatial coordinates (xi,yi) but also the 
orientation oi, of each module mi so as to optimize 
a few competing objectives at once. This gives four 
objective functions: f1, the total chip area covered 
by the bounding box of all modules; f2 the 
estimated worst-case signal delay along critical 
nets in N, which depends on interconnect length 
and placements of modules; f3 the peak power 
density or a hotspot region where switching 
activity and leakage interact and f4 the max 
thermal deviation or the greatest temperature 
difference induced by uneven power dissipation. 
Individually, these objectives need to be reduced 
with the final result being a Pareto front of 
solutions of trade-offs. Design is further dictated 
by a no-overlap requirement, that two module 
bounding boxes cannot overlap, and the bounding-
box constraints that restrict all of the modules to 
be within the outline of the die. This is the 
formulation that turns floorplanning into a multi 
objective, high dimensional, combinatorial 
optimization problem and at the same time makes 
finding a globally optimal solution to all four 
objectives computationally intractable by brute 
force because of the exponential explosion in the 
number of possible arrangements. 
 
3.2 NSGA-II Overview 
one such multi-objective evolutionary algorithm is 
NSGA-II which explores a population of P 
candidate solutions across G generations to 
describe the Pareto front of a problem. Every 
member of a population codes a floorplan using a 
representation called slicing-tree: A sequence of 
ordered tree which proceeds into internal nodes 
representing either horizontal or vertical cuts and 
leaf nodes representing modules mi. At every 
generation NSGA-II computes the four objective 
functions,f1 though f4 associated with every 
individual, either by employing a surrogate or a 
high-fidelity engine. The algorithm will then carry 
out nondominated sorting, in which the 
combination of parents and offspring is divided 
into prioritized fronts under the Pareto-domin bet 
(the first front will include the nondominated set, 
the second will include all members of the 
population that have a smaller Pareto dominance 
compared to at least one member of the first one, 
and so on). In the effort to maintain diversity along 
the front, a crowding-distance measure is 
calculated on each individual by NSGA-II, which 
would approximate how near an individual is to its 
neighbors in the objective space. In the choice of 
individuals for the next set, lower ranked (more 
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nondominated) individuals are favored and so is 
one with larger crowding distance within same 
front. Based on the slicing-tree genotype, genetic 
operators which are crossover and mutation 
generate offspring that investigate new 

placements. With successive generations, NSGA-II 
steers the population to a heterogeneous and well 
spread around representation or approximation of 
the true Pareto front. 

 

 
Figure 1. Problem Formulation and Slicing Tree-Based Encoding in NSGA-II Framework 

Fig. Illustration of the multi-objective floorplanning problem including thermal deviation, delay, and chip 
area. The slicing tree encoding facilitates initial population generation and integration with NSGA-II 

optimization for Pareto-front approximation. 
 
4. AI-Accelerated MOEA Framework 
4.1 Floorplan Encoding 
In an attempt to thoroughly search the floorplan 
search space, every prospective solution is 
represented as a L=2n-1 (a binary slicing tree 
where there are n modules). In this portray, the n 
leaves are the person perceiving modules, and the 
n-1 internal nodes are either the vertical or the 
horizontal cutlines that cut the layout region. This 
has the feature that a preorder traversal of the tree 

produces a fixed-length genotype suitable to 
standard genetic operators. In crossover, 
exchanges subtrees of two parents, maintaining 
valid slicing trees, whereas, mutation randomly 
flips an orientation of a cutline, or swaps two leaf 
nodes. This compact coding ensures that each child 
is a possible, non-overlapping floorplan contained 
in the die boundary and supports fast genetic 
crossover that does not require time consuming 
feasibility checks. 

https://eccsubmit.com/index.php/congress/issue/view/7
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Figure 2. Genetic Operators on Slicing Tree Representation 

Slicing tree encoding of floorplans enables compact genetic representation and supports efficient crossover 
and mutation while preserving layout feasibility. 

 
4.2 GNN Surrogate Model 
Instead of invoking a full EDA engine for every 
candidate, we employ a graph neural network 
surrogate to approximate four key metrics: total 
chip area (f̂1), worst-case signal delay (f̂2), peak 

power density (f3̂), and maximum thermal 

deviation (f4̂). To this end, we convert the slicing 
tree into a dual graph: each module is a node 
enriched with features such as area, aspect ratio, 
and orientation, while edges encode both physical 
adjacency (shared cutline boundaries) and netlist 
connectivity. The GNN architecture comprises five 
graph-convolutional layers that propagate and 

aggregate information across module and 
adjacency edges, followed by a global pooling 
operation that distills the entire floorplan into a 
fixed-size embedding. A final multilayer 
perceptron (MLP) head outputs the four scaled 
metrics. Trained offline on 50,000 randomly 
generated floorplans—each evaluated by a 
commercial physical-design engine—the GNN 
achieves under 3% mean absolute error on a held-
out test set, with inference times below 5 ms per 
candidate, thereby offering an efficient proxy for 
expensive engine calls. 

 

 
Figure 3. GNN-Based Surrogate Model Architecture 

Graph neural network pipeline for floorplan evaluation. Node features (e.g., area, aspect ratio) are processed 
via graph convolutions, followed by global pooling and a multi-layer perceptron to predict multi-objective 

scores f1 to f4. 
 
4.3 Confidence-Driven Hybrid Evaluation 
To consider the tradeoff between speed and 
fidelity the AI-MOEA-FP uses confidence-based 
assessment strategy in each generation. As we use 
surrogate inference, to aggregate prediction 
uncertainty we use Monte Carlo dropout: randomly 
dropping network activations during test time. In 

those cases where the surrogate-collected variance 
is lower than a predetermined limit, or in any 
design that happens to be on or close to the 
current Pareto frontier, we resort to the high-
fidelity EDA evaluation with the formerly termed 
Golden-Engine to give precise metric values. 
Surrogate outputs are used by all the other 
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candidates. This partial re-analysis removes any 
possible surrogate bias in the most significant 
designs without invoking unnecessary calls to the 
engine of obviously questionable candidates. 
Empirically, this strategy significantly minimises 

full-engine calls (by 170), decreases the total 
optimization run-time by a factor of four and 
minimises the loss in the quality of the Pareto-
front to 1-2 percent of its all engine counterpart 
run by NSGA-II. 

 

 
Figure 4. Hybrid Evaluation Strategy Using Surrogate Uncertainty 

Decision flowchart illustrating how candidate solutions are evaluated during optimization. If the GNN 
surrogate's prediction confidence (variance) is high, its output is used. Otherwise, the full EDA engine is 

invoked to ensure accurate fitness computation. 
 
5. Experimental Setup 
5.1 Benchmark Suites 
To assess accurately the performance of AI- MOEA 
-FP, we use three sub 5 nm floorplanning 
benchmarks that are typical of the industry. To 
start with, the ISPD19 suite includes five ASIC-
scale designs, each with 20-50 hard modules 
(example: processor cores, memory macros, and 
accelerators), with an astral congestion of 
interconnections. These benchmarks benchmark 
realistic module sizes, aspect ratios, and 

connectivity patterns on which advanced-node SoC 
designs used. Secondly, we add two scaled to the 
MCNC block-level circuits original prototype 
developed at 90 nm technology but now enlarged 
with the aim of reproducing sub 5 nm cell and 
metal sizes and, at the same time, maintaining 
logical intactness. This is a mixed suite that enables 
us to put AI-MOEA-FP to stress-testing at both full-
chip and block scenarios, which span a wide 
spectrum in terms of module counts, aspect ratios, 
and complexities of the nets lists. 

 

 
Figure 5. Benchmark Suite Overview and Statistics 

Overview of benchmark circuits used for evaluating AI-MOEA-FP, including ISPD’19 ASIC-scale designs (C1–
C5) and resized MCNC block-level circuits (B1, B2), with details on module count, average aspect ratio, net 

count, and 5 nm technology scaling. 
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5.2 Baseline Methods 
We compare AI-MOEA-FP against three established 
approaches: 
 NSGA-II (Full EDA Evaluations): A vanilla 

implementation of the nondominated sorting 
genetic algorithm, where every candidate in 
each generation is evaluated using the 
commercial physical-design engine to 
compute exact area, timing slack, power 
density, and thermal profiles. This baseline 
represents the gold standard in multi-
objective floorplanning at the cost of high 
runtime. 

 SA-FP (Simulated Annealing 
Floorplanner): A multi-objective simulated 
annealing engine that optimizes a weighted 

cost function combining chip area, estimated 
wirelength, and thermal penalty. We tune 
annealing schedules and weightings via grid 
search to ensure competitive performance. 
SA-FP provides insight into how heuristic 
single-population methods fare against our 
surrogate-augmented evolutionary search. 

 GNN-Only Optimization: A strategy that uses 
our trained GNN surrogate to score and rank 
candidates in a single-pass greedy search, 
without any high-fidelity engine calls or 
evolutionary operators. This baseline 
highlights the upper bound on speed-ups 
achievable purely through surrogate inference 
and underscores the value of guided 
exploration. 

 

 
Figure 6. Evaluation Methodology Comparison 

Comparison of evaluation techniques (full engine vs. hybrid vs. surrogate) across NSGA-II, SA-FP, GNN-only, 
and AI-MOEA-FP 

 
5.3 Evaluation Metrics and Environment 
We measure performance across three key 
dimensions: 
1. Pareto Hypervolume: The normalized 

hypervolume under the Pareto front in the 
four-objective space (area, timing, power 
density, thermal deviation), which quantifies 
both convergence to the true front and 
diversity of solutions. 

2. Total Runtime: The wall-clock time from 
algorithm start to termination (set at a fixed 
number of generations or convergence 
threshold), measured on a Linux server with 
dual Intel Xeon Gold CPUs and an NVIDIA 
A100 GPU (for GNN inference). 

3. Average Engine Calls: The percentage of 
candidates re-evaluated by the high-fidelity 
engine, averaged over all generations. This 
metric directly reflects the efficiency gains 
from surrogate use and confidence-driven 
screening. 

All methods are run with identical population sizes 
(100 individuals) and termination criteria (either 
200 generations or no improvement in 
hypervolume for 20 consecutive generations). We 
perform five independent trials per benchmark to 
account for stochastic variation and report mean 
and standard deviation for each metric. 
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Figure 7. Metric Collection and Analysis Pipeline 

End-to-end evaluation pipeline: from benchmark netlist to metric collection and report generation. 
 
6. RESULTS 
AI-MOEA-FP achieves p-value<0.01 over all 
measures which are hypervolume, runtime and 
engine-call (Table 1). The vanilla NSGA-II uses 24 h 
of run time to obtain a hypervolume of 0.642 and 
the evaluation of all candidates with the high-

fidelity engine (100% engine calls). An example of 
optimality that AI-MOEA-FP performs better in the 
hypervolume in comparison to other methods as 
seen in Figure 6.1, and it decreases runtime usage 
and frequency of engine calls dramatically. 

 

 
Figure 8a. Multi-Metric Performance Comparison 

Another benchmark shows that the simulated‐annealing floorplanner (SA-FP) takes 18 h to produce a 
hypervolume of 0.573 whereas the GNN-only strategy completes just in 1 h, absolutely zero engine calls were 

made but it also produces the worst front (0.512 hypervolume). In comparison, AI-MOEA-FP achieves a 
hypervolume of 0.712 after only 6 h with the full engine activated on only 30 percent of the candidates-
showing that surrogate-guided evolution has the capability of succeeding in finding better trade-offs at 

radically reduced computational cost. 
 
Convergence Speed 
AI-MOEA-FP’s hybrid evaluation strategy 
accelerates search convergence by a factor of four 
compared to full‐engine NSGA-II.This trend is 

illustrated in Figure 6.2, where AI-MOEA-FP 
reaches 90% of its final hypervolume within 2 
hours, while NSGA-II takes more than 15 hours. 
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Figure 8b. Convergence Trend Over Time 

Along all benchmarks, the AI-MOEA-FP achieves 90 percent of its eventual hypervolume once execution was 
underway within the first two hours, but NSGA-II takes more than 15 hours to achieve the same point. This 

has been shown to lead to such rapid convergence because the GNN surrogate can swiftly diffuse the bad 
designs in such a way that the evolutionary algorithm can only dedicate mind-power in the most promising 

side of the search space. 
 
Pareto‐Front Improvements 
More than speed, solution quality is also improved 
with AI-MOEA-FP. The framework averages a 12 
percent improvement in the Area-timing Trade off 
Hypervolume compared to NSGA-II, which is a 
measure of improved packings and improved 
critical per-path delays. In powerthermal, the 
Pareto frontier changes by about 10 percent which 
implies more balanced power profiling and less 
thermal hotspots. In Figure 6.3, a visual 

comparison of Pareto fronts is given, 
demonstrating that AI-MOEA-FP outperforms 
NSGA-II in areaobjects trade-offs. These 
enhancements indicate the effectiveness of 
selective high‐fidelity evaluations that have been 
made based on surrogate uncertainty in 
maintaining and even improving the quality of 
multi-objective solutions as opposed to 
conventional methods. 

 

 
Figure 8c. Pareto Front Comparison of Layout Solutions 

Comparison of computational cost between GNN surrogate, full-engine evaluation, and hybrid evaluation 
framework. 
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Table 1. Performance comparison of optimization methods on sub-5 nm benchmarks. 
Method Hypervolume ↑ Runtime (h) ↓ Engine Calls ↓ 
NSGA-II 0.642 24 100% 
SA-FP 0.573 18 N/A 
GNN-only 0.512 1 0% 
AI-MOEA-FP 0.712 6 30% 

 
7. DISCUSSION 
The experimental performance shows that AI-
MOEA-FP is efficient to balance between explosion 
and solution precision of sub-5 nm floorplanning. 
With GNN surrogate trained on the costly EDA 
engine evaluations it uses to eliminate poor quality 
candidates quickly, allowing the evolutionary 
search to commit its computational budget to the 
hopeful regions of the design space. And the main 
reason why AI-MOEA-FP outperforms vanilla 
NSGA-II by 4x in runtime is this surrogate-based 
pruning because this model takes about 0.1 ms to 
verify each candidate, which is many orders of 
magnitude less time than how long a single full 
physical assessment takes (~30 s). 
Most importantly, the confidence-based hybrid 
assessment system guarantee that surrogate error 
are not allowed to pile up uncontrollably. With 
Monte Carlo dropout measuring of uncertainty of 
prediction, AI-MOEA-FP can selectively re-evaluate 
dominant or Pareto-front candidates using the 
golden-engine. Such targeted sanity check 
maintains the integrity of Pareto front: ablation 
studies indicate that the loss of 6% final 
hypervolume occurs with the omission of the 
confidence filter, where a hidden bias created by 
the surrogate bias subtly leads the population to 
the less than optimal trade-offs. On the other hand, 
using the engine only (i.e., standard NSGA-II) 
would assure accuracy at the unacceptable price of 
performing an evaluation exhaustively. 
In addition to convergence rate and the quality of 
the front, the results obtained by AI-MOEA-FP 
show that there is a significant advancement in 
certain trade-fan areas. The measured 12 percent 
improvement to the area-timing hypervolume 
shows that the framework does not only speed up 
the search but also discovers previously unknown 
layouts configuration that better compromise 
between die size and critical-path delay than 
before. The power-thermal frontier shift by ~10%, 
in its turn, highlights the ability of the surrogate to 
account for thermal interactions between modules, 
which becomes ever more important at sub-5 nm 
nodes with the hotspot mitigation as a major 
design concern to reliability. 
In spite of these advantages, there are a number of 
limitations that need to be mentioned. First, the 
surrogate model will be trained with randomly 
generated floorplans; it will be calibrated to face 
accuracy loss when aspect ratios of the modules 
are very irregular or on new IP-block layout that 

were not part of the training sample. This could 
also be made more robust by including online 
retraining or active learning: engine-verified 
Pareto solutions are added to the data set of the 
surrogate. Second, the structure of our modern 
slicing-tree encoding is soft macro-centric and 
explicitly does not deal with soft standard-cell 
placements. Generalizing the genotype to a two-
level representation to incorporate macro block 
and cell cluster information as well would 
generalize AI-MOEA-FP to physical design flows at 
full-chip scale. 
Last, as much as our benchmarks target a range of 
SoC and block-level designs, it will be critical that 
commercial EDA toolchain integration support 
interoperability of commercial formats like 
DEF/LEF as well as support to incremental 
updates through design closure. The next direction 
will be the integration of API with first-order 
systems, as well as an expansion of hybrid 
framework to 3D-IC and heterogeneous integration 
levels- in such heterogenous combinations, multi-
layer trade-offs in thermal and interconnect 
further add to optimization complexity. By needing 
to work on such channels, AI-MOEA-FP could 
become a generalized tool of AI-based physical 
layout in the most advanced technology nodes. 
 
8. CONCLUSION AND FUTURE WORK 
We have proposed a new hybrid algorithm, AI-
MOEA-FP, which embeds the algorithm NSGA-II 
and a graph neural network surrogate and hence 
brought together the explorative framework of 
mating with the speed to predict to meet the 
daunting task of optimizing a multi-objective 
floorplanning in a sub-5 nm VLSI layout. Inference 
in < 5 ms and < 3% error is implemented by 
encoding candidate layouts as compact slicing 
trees, and using a five-layer GNN, enhanced with 
both module features and connectivity 
information, to propose layouts in seconds, more 
often than not causing the evolutionary algorithm 
to forego the more expensive call to the EDA 
engine. Our confidence-based assessment plan 
makes careful use of high-fidelity assessments of 
uncertain or Pareto-front designs, reducing engine 
invocations by almost 70 percent and cutting run 
time by a factor of four. The results of experimental 
validation of ISPD ISPD.19 and resized MCNC 
benchmarks show the convergence time that is 4x 
faster and area hyper volume of an area timing that 
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is 10-15 percentage slack of state-of-the-art NSGA-
II and simulated-annealing benchmarks. 
 
Future Work 
In the future we will widen the scope of AI-MOEA-
FP by applying its slicing-tree genotype to mixed 
macro and standard-cell placements to full-chip 
designs, and by incorporating active learning or 
retraining to ensure the accuracy of the GNN 
surrogate to new or out-of-distribution floorplan 
patterns. We will moreover construct APIs, format 
translators that permit easy integration into 
commercial EDA flows (DEF/LEF/DB), and help IP-
level analysis such as in pre-silicon closure) and 
heterogeneous floor planning and 3D-IC 
floorplanning using multi-layer stacking and 
thermally aware TSV placement. Such 
improvements can make AI-MOEA-FP an engineful, 
industrial ready tool that designers use to travel in 
increasingly complex trade-off landscapes at future 
advanced nodes with previously unmatched speed 
and fidelity. 
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