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 The increasing worldwide problem of cardiopulmonary diseases adds 
even more sense to the necessity of safety and accuracy of health 
monitoring systems, which should be non-invasive and performed 
continuously and in real-time. This paper presents a new smart 
wearable product that is used to monitor cardiopulmonary vital signs, 
such as heart rate (HR), respiratory rate (RR), and peripheral blood 
oxygen saturation (SpO2) with a multimodule wearable form factor, 
which is wearable and easy to use due to the implementation of 
miniature and low-power sensor modules. The fundamental innovation 
of the proposed system is an adaptive feedback loop of the system, 
which is supported by edge-based machine learning of anomaly 
detection modules, LSTM-based, allowing adjusting the alert thresholds 
and delivering the personalized perspective on health dynamics in real-
time. As compared to standard wearables that apply fixed limits on the 
alarms, our solution is considering the physiological individual 
variations and changes over time, thus making it sensitive to early 
abnormalcy changes and reduces false alerts. The wearable comprises 
of an ESP32 microcontroller platform that enables the transmission of 
wireless data over Bluetooth to a companion mobile application in 
order to visualize data and issue alerts over a remote connection. The 
performance of the system was tested in the form of a mixture of 
simulations, bench-level hardware tests, and pilot research of 10 human 
participants with different cardiopulmonary status. Its measurements 
prove to be of high accuracy and more than 98% of correlation with 
conventional clinical devices, and the feedback loop of the device is 
responsive to highly critical variations in physiologic signals. Further, 
the system has low latency (<=130 ms), power efficient (<=45 mW) and 
solid signal processing with motion artifacts. Adaptive feedback 
mechanism also managed to issue an early alert regarding abnormal 
breathing pattern and oxygen desaturation in high-risk participants. 
The article is an important contribution to the future wearable health 
monitoring platforms with the possibility of proactive care, all-time 
health profiling, and remote patients management via connection to the 
telemedicine and e-health structures. The modularity and flexibility of 
the system also leave us with the potential that we use it in managing 
chronic diseases, with the aged, and during rehabilitation. 
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1. INTRODUCTION 
Chronic obstructive pulmonary disease (COPD), 
asthma, congestive heart failure, and symptoms of 
obstructive sleep apnea are considered a few of the 
most devastating cardiopulmonary complaints 
throughout the world. Regular screening and 
monitoring of all important vital signs of the 
organism, including heart rate (HR), respiratory 
rate (RR), and blood oxygen status (SpO 2) is 
essential in the treatment of such conditions and 
improvement of related health risks. Historically, 
these parameters have been restricted to clinical 
observation in large and costly, not to mention 

invasive, instrumentation which further restricts 
their portability and long-term or ambulatory 
application. With healthcare systems transitioning 
to a culture of prevention, personalization, and 
decentralization of care, an urgent need to have 
wearable technologies can conduct accurate real-
time physiological monitoring during the real-life 
setting has emerged. 
The growth in microelectronics, low power, 
biomedical sensors, flexible electronics, and 
wireless communication are all relatively new 
technologies that currently allow wearable health 
monitoring systems to become feasible. The 
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devices allow constant monitoring of vital signs, a 
non-invasive process to connect the patients with 
the health providers. The majority of the 
wearables available in the market are however 
passive data gathering and can only trigger alerts 
based on fixed set-points, and have no intelligence 
to be adaptive to the vagaries of individual 
physiology. Such method does not only cause a 
high false positive or false negative rates, but also 
ignores useful temporal dynamics in the biosignals 
that might be pointing at an early sign of health 
degradation. 
To address the aforementioned restrictions, this 
paper (i) introduces the concept and 
implementation of a smart wearable system that 
has an adaptive feedback loop, that is, it analyzes 
real-time cardiopulmonary signals and adapts its 

response strategies to them. The suggested system 
couples a combination of biosensors and the edge-
based microcontroller-based platform to measure 
the heart rate, respiratory rate, and SpO 2. It uses 
machine learning methods to learn user specific 
baselines and understand deviations that can 
signal health risks; specifically, it uses Long Short-
Term Memory (LSTM) networks. Using adaptive 
feedback systems the wearable system can not 
only notify the user, or the care giver, but it may 
also adjust the decision thresholds in regard to the 
contextual data, which makes the system more 
responsive, personal, and reliable. A high-level of 
system architecture overview and signal flow is 
shown in Figure 1 illustrating the System Block 
Diagram of Smart Wearable For Cardiopulmonary 
Monitoring with Adaptive Feedback Loop. 

 

 
Figure 1. System Block Diagram of Smart Wearable for Cardiopulmonary Monitoring with Adaptive 

Feedback Loop. 
 
This study adds value to the further proactive 
solutions in health monitoring since it integrates 
physiological sensing, real-time analysis, and 
intelligent feedback. Moreover, the system has an 
architecture that is computational and energy-
saving enough to be used on demand in various 
settings, including the daily monitoring of 
activities and post-surgery progress. Finally, this 
effort is valuable towards the overall aim of 
augmenting intelligence-facilitated telehealth 
ecosystems that engage the patients and enhance 
clinical outcomes. 
 
2. RELATED WORK 
The latest developments in wearable health 
monitoring systems have been directed towards 
the addition of biosensors (with ECG and SpO 2 
modules being among some of the most common 
ones) to small devices. Yet, a number of these 

systems remain to be based on fixed thresholds 
and have not been equipped with flexible adaptive 
feedback loops, which makes them rather 
ineffective at more personal processes of health 
monitoring. 
Xu et al. [1] designed a wrist-based device that is 
able to measure electrocardiogram (ECG) and SpO 
2 (blood oxygen saturation). The system was 
successful in producing reasonable signal fidelity, 
but failed to translate data into a context that was 
specific to the user and offer him individualized 
alerts. Nguyen and colleagues [2] presented a 
respiratory monitoring system in a smart textile 
that was capable of providing continuous 
measurements of the respiratory patterns. In the 
face of its novelty in the form factor, the system 
applied fixed threshold values, which raise the 
probability of the system to engage in the false 
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alarm stage and loss of sensitivity to a minor 
physiological variation. 
Kumar and Patel [3] introduced a wearable 
cardiovascular anomaly-oriented machine learning 
reward. They implemented predictive analytics in 
their system, however, this was only focused 
towards cardiac-specific parameters and not on 
multi-parameter integration or historical trends-
based adaptive learning. 
The proposed system in this paper provides a 
multi-sensor wearable platform that integrates 
PPG, breathing, and temperature along with its 
high resolution that is not available to these 
previous attempts. More to the point, it 
implements real-time adjustable feedback loop 
with an edge-based Long Short-Term Memory 
(LSTM) network implementation. The architecture 
supports on-going learning of personal baselines 
and dynamic setting of alert thresholds in 
response to changes in physiological context, 
which overcomes the essential shortcomings of 
current techniques. 
 
3. System Architecture 
3.1 Sensor Modules 
Sensor module In this project, sensor module is a 
very important part of the smart wearable system, 
it will measure essential cardiopulmonary 
parameters in a real-world setting with high 
precision. The Photoplethysmography (PPG) 
sensor is at the center of this module and can be a 
MAX30102 that can measure heart rate (HR) and 
blood oxygen saturation (SpO 2 ) in an arms-length 
non-invasive fashion by measuring the absorption 

of IR and red light through the skin. The 
MAX30102 integrated LED driver and 
photodetector array allows precise measurement 
of volumetric changes in blood flow, correlating to 
cardiac cycles and levels of blood oxygen 
saturation. The system to record respiratory rate 
(RR) uses stretch sensor or piezoelectric (Piezo) 
sensors which are sensitive to expansion of the 
chest wall and contraction. Stretch sensors are 
used to measure the change in resistance due to 
the expansion of the fabric or material during 
breathing and piezoelectric sensors show the 
impact of mechanical strain on respiratory motion 
translated into voltage signals. Such sensors offer 
uninterrupted and real-time monitoring of 
respirations, which is necessary to identify 
respiratory patterns, including the absence of 
ventilatory efforts (mainly in terms of tachypnea 
or apnea). Moreover a temperature sensor, 
commonly, an LM35, is used to track the changes 
in core body temperature and provide information 
about the febrile reaction or the thermal 
deviations indicating the respiratory infection or 
systemic inflammation. Figure 2 represents the 
concrete spatial arrangement and connection of 
these sensors in the smart wearable system that 
defines the location of their placement and 
interaction with the body of the user. Collated, 
these sensors create an efficient and small module 
capable of presenting multimodal monitoring 
physiological data that allows integrative 
monitoring of cardiopulmonary health and 
facilitates the adaptive feedback maneuver in the 
wearable system. 

 

 
Figure 2. Illustration of Sensor Integration in the Smart Wearable System. 
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Figure 2 was designed by the authors using 
original vector illustrations for academic and 
educational purposes. 
 
3.2 Processing Unit 
The ESP32 microcontroller (dual-core low-power 
processor that is energy efficient and powerful) 
grounds the processing unit of the proposed smart 
wearable system and acts as a central hub of signal 
acquisition, preprocessing and communication. 
Inbuilt Wi-Fi functionality and Bluetooth on the 
ESP32 allow transmitting wireless data to other 
devices, including smartphones, tablets, or even 
on-cloud servers without difficulties, offering the 
possibility to monitor the device in real-time 
remotely and merge it with telemedicine systems. 
In addition to its connectivity capabilities the 
ESP32 is also capable of preprocessing some initial 
stages of a sensor signal, e.g. filtering noise and 
motion artifacts in the raw sensor data through 
embedded digital signal processing (DSP) filters. 
This gives clean and sound input to be used in 
further analysis. To complement the 
microcontroller, there is an edge-based Machine 

Learning (ML) mist that allows on-device 
intelligence without reliance on the constant 
connection to the cloud. Namely, the system 
combines an LSTM (Long Short-Term Memory) 
neural network which is directly run on the edge 
and which learns temporal patterns in 
physiological signals and can also detect signal 
anomalies in real time. This ML module changes 
the alert thresholds and gives feedback responses 
according to the user-level baselines, existing 
trends, and contextual information. In Table 1, the 
processing unit components and the respective 
functions are well summarized. The integrated 
ESP32 and the ML module architecture can easily 
deliver greater responsiveness, latency reduction 
as well as the preservation of the users privacy by 
limiting the amount of data to transfer, since the 
architecture can support personalized adaptive 
monitoring at the edge. This intelligence in the 
edge is what constitutes the center of the adaptive 
feedback loop, whereby the wearable device does 
not just receive data but it also translates it into a 
meaningful and proactive format. 

 
Table 1. Functional Overview of the Processing Unit Components. 

Component Functionality 

ESP32 Microcontroller Signal acquisition, preprocessing, wireless communication 

DSP Algorithms Noise filtering, motion artifact correction 

Edge ML Module (LSTM) Temporal pattern recognition, anomaly detection 

Feedback Controller Dynamic threshold adjustment, personalized alerts 

 
3.3 Adaptive Feedback Loop 
The proposed wearable system will be defined not 
only by the method of collecting bio signals 
(possessing a remarkable degree of precision, 
sensitivity, and signal quality), but also by the 
adaptive feedback loop, which will raise the 
current state of bio signal-based monitoring to a 
new level of smart, intelligent and reactive 
diagnostics. The role of the temporal pattern 
recognition using Long Short-Term Memory 
(LSTM) neural networks, that are quite suitable to 
consider the sequential and time-based data, is the 
core of this mechanism. In contrast to the 
conventional threshold-based systems where 
threshold limits are set in advance, the LSTM 
model is constantly training and adjusting to 
individual physiology of a user, based on historical 
data evaluations and detection of differences in 
preset modes. This allows the system to pick up 
subtle anomalies that may betoken immanent 
cardiopulmonary stress such as slow oxygen 
desaturation or aberrant respiratory rhythms, 
previously they may have not been perceived. 

Moreover, the feedback loop readjusts the alert 
thresholds dynamically and in real-time, 
depending on the contextual variables, including 
recent activity levels, time of the day, and 
environmental factors to minimize false positives 
and increase clinical relevance. As shown in figure 
3 this adaptive decision-making cycle, the 
incoming input which is in the form of bio signals 
undergoes analysis using LSTM, synthesis of this 
information into the context and adjusting the 
threshold level and creation of feedbacks. Such 
dynamic and individual customization will make 
alerts more significant and timely, preventing alert 
fatigue and increasing system trust among the user 
and caregivers. The ability of the adaptive 
feedback loop to gradually perfect its decision-
making process through every new data cycle 
converts the wearable into not just a passive 
observing device but a health companion who can 
actively intervene on behalf of the user and 
continuously improve based on his or her 
performance. 
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Figure 3.  Flow Diagram of the Adaptive Feedback Loop Mechanism in the Smart Wearable System. 

 
4. METHODOLOGY 
4.1 Data Acquisition 
The initial level of the smart wearable system 
includes data acquisition and guarantees that real-
time physiological data (heart rate (HR), 
respiratory rate (RR), and blood oxygen saturation 
(SpO 2 )) are recorded with a high fidelity and a 
high temporal resolution. The typical frequency of 
sampling the biosignals with the proposed design 
is 50 100 Hz, the frequency which is a balance 
between passing a significant number of time 
points to preserve temporal details and the low 
power consumption, an essential requirement of a 
wearable device. Such sampling rate is sufficient to 
record the changing nature of cardiopulmonary 
waveforms including the minute variations of PPG 
waves and breathing patterns, without taxing the 

edge processor computing and memory resources. 
Figure 4 depicts the process of signal acquisition 
and preprocessing as a result of which the raw 
biosignal source is transformed into filtered signal 
outputs that can be analyzed. To make the 
obtained signals reliable, two-stage filtering 
procedure is applied. A Butterworth low-pass filter 
is firstly used to reduce high-frequency noise and 
EMF that can be caused by motion artefacts 
(optical), ambient light (optical sensors) or 
external electronics. Butterworth filter is 
predetermined by the fact that it has the maximum 
flat frequency characteristic in the pass band i. e. 
does not alter the actual shape of the signal; 
effectively cancels out unwanted high frequency 
components. This assists in keeping the 
physiological waveform data clinically clean. 

 

 
Figure 4. Signal Acquisition and Preprocessing Pipeline in the Smart Wearable System. 

 
Dynamic signal smoothing and state estimation in 
real-time is done after noise suppression through a 
Kalman filter. The Kalman filter employs a 
prediction mode to determine the present state of 
the signal and refinements are done as new 

measurements become available thereby reducing 
the effect of random noise on the measurements. It 
is also helpful when dealing with wearable 
environments where movements and the physical 
relocation of the sensors may cause irregularities 
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in both signal amplitude and timing. Similarly, due 
to its adaptive character, the Kalman filter is the 
most suitable method in tracking the bio signals 
with a temporal variability e.g. HR and RR for 
smoother and more consistent feature extraction 
at a later point. 
These signal conditioning techniques combined 
can guarantee that the system will get clean, stable, 
and clinically relevant data in real-time, which is 
crucial to proper anomaly detection and good 
operation of the adaptive feedback loop. 
 
4.2 Feature Extraction 
The smart wearable system requires feature 
extraction, which converts the raw preprocessed 
biosignals into physiological. The feature 
extraction acts as an essential step in determining 
meaningful indicators in the real-time health 
monitoring system interpreted by the machine 
learning algorithms. This system identifies three 
main dynamic features namely Heart Rate 
Variability (HRV), Respiratory Rate Variability 
(RRV), and Blood Oxygen Trend. The parameters 
provide a more comprehensive picture of the 
cardiopulmonary status of the user than fixed 
values of the vital signs. The feature extraction 

pipeline, as illustrated in Figure 5, directly 
correlates each of the biosignals PPg, respiratory 
waveform, and motion data with dedicated 
modules of HRV, RRV, and SpO 2 trend analysis, 
constituting the input of the following ML-based 
assessment. The concept of Heart Rate Variability 
(HRV) is associated with variations of the time 
between successive heartbeats on the PPG 
waveform. HRV is a clinically relevant parameter 
of autonomic nervous system equilibrium and 
cardio-vascular fitness, the comprised HRV being 
typical of stress, fatigue or even the initial phases 
of cardiac disease. Respiratory Rate Variability 
(RRV) inferred by calculating the breathing rate 
over time (using respiratory waveforms, e.g. by 
stretch or piezo sensor), represents indexed 
changes in the respiration rate with time, which 
when out of range may indicate abnormalities such 
as apnea, shallow breathing, or hyperventilation 
episodes. The HRV and RRV can be obtained 
through time-domain analysis, a frequency-domain 
analysis and these analyses can be adopted as a 
quantitative foundation of anomaly detection, e.g.: 
RMSSD (Root Mean Square of Successive 
Differences) and power spectral density 
estimation. 

 

 
Figure 5. Feature Extraction Pipeline in the Smart Wearable System. 

 
Besides variability measures, one uses the SpO 2 
data based on the PPG signals to study the blood 
oxygen trend. In contrast to any single numerical 
SpO 2 measurement, the trend analysis identifies 
gradual desaturation, cyclic hypoxia, or shortterm 
desaturation that can be an indicator of 
respiratory compromise or sleep apnea. 
To have accuracy of this feature in the real life 
ambulatory environment, these features come in 
hand with motion correction technique with the 
help of an Inertial Measurement Unit (IMU). The 
IMU stores acceleration and orientation data that 
is fused with the physiological measurements to 
identify and correct motion artifacts, e.g. motion 

artifacts caused by sudden hand movements, by 
walking, or by alterations of posture, that would 
degrade PPG and respiratory signals. An adaptive 
filtering or a regression-based method of motion 
artifacts removal is used thus making feature 
extraction robust even when the conditions are 
dynamic. 
All these features extracted are fed to the adaptive 
feedback loop and anomaly detection module 
where it supports individual interpretation of the 
cardiopulmonary health signals rendering them 
context specific and thus making early 
interventions possible through alarming based on 
anomaly detection. 
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4.3 ML Model for Feedback 
The core of adaptive feedback loop within the 
proposed smart wearable system is the existence 
of a strong machine learning (ML) structure based 
on Long Short-Term Memory (LSTM) neural 
network. The LSTM networks constitute a 
particular form of the recurrent neural network 
(RNN) with a specific purpose to trace time 
suppositions and sequential structures in the time 
series data, LSTM networks, especially, are suitable 
to use with physiological signal analysis like the 
heart beat frequency (HR), respiratory rate (RR), 
and SpO 2 data. Because these biosignals are 
inherently time-dependent, learning to 
characterize these time-dependent trends and 
modeling those trends is key to separating 
physiological variabilities and artifacts, and subtler 
modes of abnormality or distress. As is shown in 

Figure 6, the overall architecture of the LSTM-
based ML feedback mechanism is as follows: real-
time biosignal inputs are processed in the form of 
time-series data, anomaly detection, risk scoring, 
and context-aware threshold adaptation to 
generate smart alerts. 
The LSTM model is trained within labeled datasets 
with the instances of normal and pathological 
cardiopulmonary patterns labeled. The model, 
when being trained, learns to detect tiny, time-
varying outliers of signal dynamics that could 
reflect such conditions as bradycardia, apnea, or 
hypoxemia. In this supervised learning 
methodology the model would map particular 
signal sequences to be related to the appropriate 
level of risk and would also form a predictive 
engine that can correctly return a risk level to the 
real pass incoming real time data. 

 

 
Figure 6. LSTM-Based ML Feedback Mechanism for Real-Time Health Monitoring. 

 
When released on the edge device, the trained 
LSTM would be constantly looking through the 
streaming physiological data and provide a risk 
score depending on the extent to which the 
present data deviates to what has been learned of 
the user. This score is a primary input into the 
dynamic threshold-setting algorithm that varies 
the alert parameters dynamically based on specific 
physiological variability and the context of the 
physiological measurements (e.g. activity level, 
time of day, recent history). When the 
computationally computed risk turns out to be 
higher than the dynamically calculated risk 
threshold, the system sends an alarm (prewarning 
the user or a distant caregiver about a possible 
health problem). 
Such an architecture helps the system to refine the 
static rule-based alert systems to a personalized, 

smart, and proactive health monitoring style. It 
guarantees that feedback is simultaneously 
sensitive to anomalies in early stages and resistant 
against false alarms and thus clinical relevance, 
trust, and applicability to everyday life. 
 
5. Experimental Setup 
5.1 Prototype Implementation 
Hardware prototype of the suggested smart 
wearable system was thoroughly designed with 
the view to guarantee functional precision and 
ease of use. Its heart is a specially designed printed 
circuit board (PCB) that contains the necessary 
sensor modules, namely the PPG (MAX30102), 
respiratory (stretch or piezoelectric), and 
temperature (LM35) sensors in the most 
advantageous arrangement with direct skin 
contact on the one hand and maximum signal 
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integrity on the other. These elements are attached 
on a flexible substrate so that the device can easily 
fit the slopes of the body and this is very vital in 
allowing usage of a device over a long period of 
time. The flexibility also aids to reduce motion-
induced signal artifacts as well since it does not 

eliminate them completely when the subject 
engages in physical exercise. Figure 7 (below) 
demonstrates the prototype hardware design and 
physical form, with sensor modules located within 
the 3D-printed ergonomic enclosure, the ESP32 
microprocessor, BLE component, and battery. 

 

 
Figure 7. Prototype Hardware Architecture and Physical Integration of the Smart Wearable System. 

 
To make the electronics even more wearable, the 
whole electronics is encapsulated in a 3D-printed 
lightweight casing, adjusted with the help of 
ergonomics data so that it will fit snugly on the 
user but without being intrusive (either on wrist 
or chest area). It has a breathing, skin-friendly 
thermoplastic polyurethane (TPU) enclosure to 
reduce an overall unpleasant feeling and avoid 
skin redness when it is used over a long period of 
time. This design can easily be removed and 
charged and the internal components of design are 
not exposed to dust, sweat and minor impacts. It 
has an internal Bluetooth Low Energy (BLE) 
module, so it can be used to relay data to a 
companion mobile app in real-time using both 
Android and iOS devices. This application can be 
used to present the interface that is easy to 
navigate through the physiological data 
visualization, alerts, syncing with cloud services 
when required to access remote monitoring and 
long-term storage of data. 
 
5.2 Human Testing 
It was necessary to ensure the validation of 
functional performance and clinical relevance of 
the system, which requires a pilot human study on 
10 volunteers, 5 of them were healthy individuals, 
and 5 individuals were diagnosed with 
cardiopulmonary disorders, namely COPD and 
asthma, or mild heart failure. This group was 
selected to test the device upon various 

physiological base lines and pathological 
differences. 
The results have been obtained during testing the 
prototype device under the supervision of the 
participants who were wearing it and at the same 
time being monitored by upstanding commercial 
medical devices that are considered as gold 
standards, such as pulse oximeters to measure SpO 
2 and heart rate and hospital-grade ECG monitors 
to confirm the cardiac rhythm. The data obtained 
through the wearable and the latter devices (there 
was a range of them) were compared to evaluate 
the accuracy, consistency, and response latency. 
The smart wearable system proved to be very 
precise and reliable and, as shown in Figure 8, it 
was found to correlate strongly, with standard 
clinical instruments, of heart rate (98.2%), SpO2 
(97.1%), and respiratory rate (96.5%). Greatness 
was also to be observed in temporal alignment in 
the respiratory rate trends of the system. 
Adaptive feedback loop was also tested, whereby 
controlled-anomalies (e.g. breath holding, postural 
changes) have been introduced, in which the 
system was able to detect the variation and raise 
the corresponding alerts. This stage proved the 
potential of the wearable to be used successfully in 
real life conditions, and the sensitivity of it to 
dynamic physiological changes, an additional 
confirmation of its prospects in personalized, 
nonstop cardiopulmonary monitoring, in both 
clinic and home settings. 
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Figure 8.Validation Results of the Smart Wearable System against Commercial Medical Devices. 

 
6. RESULTS AND DISCUSSION 
The analysis of the results allowed evaluating the 
performance of potential contributions of the 
smart wearable system to the assessment of key 
cardiopulmonary parameters with the strong 
accordance to benchmark clinical indicators. The 
heart rate measurement module ended up having a 
reading accuracy of 98.2%, which reasonably 
closely followed those originating with hospital-
quality ECG monitors, as the results illustrated in 
the table indicated. Equally, SpO2 measurements 
had an accuracy of 97.1% which proves the 
effectiveness of the integrated MAX30102 PPG 
sensor compared to the commercial pulse 
oximeters. The module of respiratory rate 
obtained 96.5 percent of accuracy thus proving 
that the stretch/piezoelectric sensor module used 

is reliable even at the conditions of natural 
breathing. These outcomes do not only provide 
confidence in the integrity of the sensing 
equipment, but also indicate the usefulness of the 
signal processing pipeline that incorporates 
Butterworth and Kalman filtering, which was 
crucial to reducing the effects of body motions and 
noise-related distortions. In addition to that, the 
latency of the system was no more than 120 135 
ms with any set of parameters, so it can be used in 
real-time applications that require fast reaction. 
These, and other important performance measures 
as presented in Figure 9 under worst-case 
accuracy, latency, and power draw, make it clear 
that the wearable system is extremely reliable 
clinically. 

 

 
Figure 9. Performance Metrics of the Smart Wearable System 

 
The wearable system did not perform poorly in 
terms of power efficiency because it consumed less 

than 45 mW power throughout the modules, which 
are 42 mW, 40 mW, and 38 mW respectively by the 
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heart rate, respiratory rate, and SpO 2 monitoring 
modules. This operation at low power, with an 
efficient ESP32 microcontroller and optimized 
firmware could operate continuously more than 36 
hours on one battery charge, which meant this 
device was appropriate when the activity, e.g., day-
long or overnight, had to be monitored. These 
values are fit within the limits of real-time and 
wearable usages as indicated in Table 2, and the 
power consumption and latency numbers are both 
within or below what is required. The results 

highlight the practicability of the system in terms 
of deploying in wearable form without the need of 
frequent recharges, making it viable in the long-
term of usability and cooperation by a patient with 
prescribed long-term usage of the system. Besides, 
the mean response time of alerts was recorded as 
less than 2 seconds, confirming the potential of the 
system to offer timely alert and categorizing it as a 
highly responsive to rapidly changing 
physiological dimensions. 

 
Table 2. Performance Summary of Smart Wearable System 

Parameter Accuracy (%) Latency (ms) Power Consumption (mW) 

Heart Rate 98.2 120 42 

Respiratory Rate 96.5 135 40 

SpO₂ 97.1 128 38 

 
A particularly remarkable result of the human 
testing experiment was an 18 percent increase in 
identifying abnormal breathing patterns early, 
which was thanks to the LSTM-structure-derived 
adaptative feedback loop. This ML-based 
framework allowed this system to individualize 
alert levels with learned physiological baselines 
along with situational conditions like user mobility 
or the time of the day. Contrary to the fixed 
threshold-based systems, the dynamic system was 
successful in reducing the false positive values and 
was more sensitive in detecting health 
abnormalities in their early phase, especially when 
applied in subjects with cardiopulmonary 
complications. The findings are a strong evidence 
of clinical applicability of the system and its 
reinforcement to be involved in remote heath 
monitoring environments, particularly during 
personalized telemedicine, chronic illness therapy, 
and follow-up of patients who have been 
discharged. 
 
7. CONCLUSION  
The work involves elaboration, development, and 
testing of a new smart wearable prototype device 
based on an adaptive feedback loop that 
implements real-time continuous monitoring of 
cardiopulmonary parameters of primary interest 
the heart rate, respiratory rate, and blood oxygen 
saturation. The combination of mobile multiplexed 
sensor (sensors), energy-efficient microcontroller 
ESP32, and edge-driven Long Short-Term Memory 
(LSTM) neural network provides individual health-
related information and alert conditions through 
the modeling of user-specific physiology and 
detection of minor deviations. A comparison of its 
experimental results with clinical-grade tools 
showed great precision, low latency, and energy 
consumption when compared with clinical tools 
and the adaptive feedback mechanism greatly 

enhanced early identification of respiratory 
abnormalities. The system is also applicable in 
decentralized health monitoring, chronic disease 
management, and telemedicine since the user-
friendly design, the wireless composition and the 
mobile app form a perfect match. In the future, 
proposed enhancements will involve the 
enlargement of the dataset to achieve better 
generalization of the model in different population 
groups, ECG electrode integration to conduct 
complex heart diagnostics including arrhythmia 
and integrated safe cloud-based analytics that can 
be used to remotely conduct healthcare on a large 
scale. The present work has a solid basis in 
introducing the next generation intelligent 
wearables which would give the users the ability to 
be proactive and provide context-aware health 
monitoring. 
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