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 The trend of the growing need of continuous and real-time monitoring 
of physiological signals in wearable and implantable biomedical devices 
has raised a question to the inadequacy of the conventional machine 
learning models in edge settings. Such conventional methods are usually 
marred with the complexities of computation requirements, exorbitant 
power demands and unacceptable delays in inferences when the same is 
applied in low-power embedded machines. In a bid to overcome these 
limitations, this paper presents a bio-inspired neuromorphic system to 
perform real-time classification of biomedical signals with spiking 
neural networks (SNNs). The presented system draws on this event-
driven functionality of biological neurons to use the sparse temporal 
dynamics of SNNs to achieve ultra-low-power, low latency signal 
processing at the edge. Its framework comprises a completely integrated 
neuromorphic signal processing pipeline running on Intel Loihi 
neuromorphic processor, which enables execution of asynchronous 
spiking-based computations with on-chip learning. Combining 
biologically plausible temporal coding schemes, the preprocessed 
biomedical signals (electroencephalogram (EEG) and electrocardiogram 
(ECG), in particular) will be converted into spike trains. The system is 
thoroughly tested on publicly accessible data datasets such as CHB-MIT 
Scalp EEG and MIT-BIH Arrhythmia databases to perform two major 
tasks of seizure detection and cardiac arrhythmia classifications. The 
experimental results exhibit that the neuromorphic architecture could 
demonstrate the same or better classification performance than the 
state-of-the-art deep learning architectures like CNN-LSTM, but with 
much lower power consumption (more than 80% reduction) and 
inference latency (up to 5X faster). Moreover, the SNN framework is 
robust to signals variability and adaptation: since unsupervised learning 
is employed, through spike-timing-dependent plasticity (STDP). Not 
only does the suggested method aid in the exploration of edge 
intelligence in the context of biomedical applications, but it also 
provides a paradigm of scalable real-time energy-aware intelligent 
biosignal analysis that can be utilised in the next-generation wearable 
and distance health monitoring systems. 
 

 

Keywords: 

Neuromorphic Computing,  
Spiking Neural Networks 
(SNNs),  
Edge AI,  
Biomedical Signal Classification,  
Low-Power Embedded Systems,  
Real-Time Health Monitoring 
 

 
1. INTRODUCTION 
Fast development of wearable and skin-
implantable biomedical devices has opened a new 
horizon of having personal, continuous health 
monitoring with modeling and analysis of 
physiological signals including 
electroencephalograms (EEG) and 
electrocardiograms (ECG) in real-time, which is 
crucial in early-detection, timely-intervention, and 
patient-safety. The biosignals are naturally 
complex high-dimensional and time-sensitive 
requiring fast classification systems that have the 
potential to work with tight power and latency 
requirements. The classical deep learning 
architectures like convolutional neural networks 

(CNNs) and long short-term memory (LSTM) 
networks have demonstrated astonishing 
performance when solving biomedical signal 
classification problems. Nevertheless, they are 
learning-intensive and power-consuming, which is 
a severe obstacle to their implementation on edge 
devices with limited resources, and primarily, in 
battery-powered or implantable systems. Although 
these issues have been alleviated to some extent by 
the recent development of TinyML and model 
compressions techniques, these solutions usually 
involve compromises with regard to accuracy and 
robustness, especially in circumstance related to 
nonstationary signals or noisy settings. Further, 
current architectures are highly dependent upon 
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clock-driven processing which is not efficient in 
processing the inherently asynchronous and event-
driven nature of biomedical signals. 
In order to overcome this disparity, it is highly 
necessary to introduce another paradigm of 
biological efficiency and machine learning 
performance especially on edge-based biomedical 
applications. Neuromorphic computing takes its 
cues on the signaling mechanism of the human 
brain, which is the sparse and event-driven 
specification that promises to make a significant 
impact by using a spiking neural network (SNN). 
These networks make use of temporal code and 
spike based communication to achieve high-low 
computational parallelism and information 
processing with an ultra-low energy footprint. In 
spite of the theoretical benefits, the practical 
implementation of SNNs in real-time biosignal 
classification is scarcely developed and under-
represented. The inspiration behind the research 
relates to the scenario of how neuromorphic 
sysetems can transform edge intelligence in 
healthcare to allow operating wearable and 
implantable devices to be a decision making 
process at real time with no power efficiency 
sacrifices. 
We present a new bio-inspired neuromorphic 
computing platform in terms of the real-time 
classification of biomedical signals through SNNs, 
which is implemented on Intel Loihi neuromorphic 
processor. The system has been developed to 
perform the classification of the EEG and ECG 
signals with regard to some critical applications 
like EEG characteristics associated with seizure 
and ECG characteristics associated with 
arrhythmia exploit biologically plausible encoding 
mechanisms, unsupervised spike-timing-
dependent plasticity (STDP) to learn adaptively. 
The proposed architecture is systematically 
compared with the traditional deep learning 
architectures in terms of classification accuracy, 
inference latency and power consumption. The 
presented findings prove the viability and success 
of neuromorphic architectures in the use case on-
device biomedical signal processing and the 
potential use of the technology at scale, enabling 
the next generations healthcare intelligent systems 
to be fast, energy-efficient, and scalable moving out 
of the lab to the real world.. 
 
2. BACKGROUND AND RELATED WORK 
Neuromorphic computing Neuromorphic 
computing is a very promising paradigm shift in 
artificial intelligence and signal processing, 
focusing especially on energy-limited and real-time 
applications. Neuromorphic systems are hardware-
based on the brain architecture and dynamics, 
simulating neural networks as they are modeled in 
detail by event-driven, asynchronous computation. 

Spiking Neural Networks (SNNs)) are at the heart 
of the systems, with their principle departure point 
being that information transmission between 
nodes in the system is represented by discrete 
spikes through time, closely resembling the 
biological equivalent of a neuron. SNNs allow 
sparse computation and are highly time-resolving, 
which is why it is a good application where the 
amount of power consumed and latency is a major 
limiting factor. A number of neuromorphic 
platforms have been developed to research and 
implement practical use SNNs. The Loihi processor 
is designed by Intel incorporating the on-chip 
learning procedure and the heuristic scale-out 
mesh of spiking neural cores to perform learning 
and processing at the edge in the low-power mode, 
in real-time [1]. Shortly afterwards in 2014, IBM 
launched its TrueNorth platform which consisted 
of one of the first large-scale neuromorphic chips 
which featured a non-von Neumann architecture 
optimized towards event-based sensing and 
computation [2]. In a similar manner, the 
Heidelberg University produces BrainScaleS that 
also provides the ultra-fast neural computation 
using accelerated analog neuron models in 
scientific simulations [3]. 
In biomedical signal classification, there are 
several machine learning and deep learning 
methods that had been explored. Handcrafted 
features based on time-domain or frequency 
representations of EEG, ECG or EMG are frequently 
used in traditional methods, which are then 
classified by support vector machines (SVMs), 
decision tree or k-nearest neighbor (k-NN) [4]. 
Nevertheless, deep learning, especially 
convolutional neural networks (CNN) and long 
short-term memory networks (LSTM), have come 
on the scene and performed immensely better at 
learning spatial and temporal dependencies on raw 
or minimally pre-processed signals. CNNs perform 
well in biomedical signals in extracting local 
features, whereas LSTMs are more appropriate 
models in cases where long dependency 
businesses matter as in ECG and EEG signals. CNNs 
hybrid models which include LSTM have had 
reasonable performance in jointly incorporating 
both space and time patterns [5], [6]. Although 
these models have high accuracy in classification, 
they require significant resources and hence they 
are not feasible in terms of deployment at the 
edges. 
The increased demand of Edge AI in healthcare has 
motivated the investigation of low-latency, low-
power model in embedded biomedical intelligence. 
With Edge AI, the processing of signals and 
inference can be made up directly or even near the 
point of data acquisition and thereby avoiding the 
communication overhead and facilitating a high 
degree of privacy as well as overall responsiveness 
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on a real-time level. Nonetheless, the edge 
deployment of deep learning models is a challenge 
because of memory and computer processing 
capabilities challenges, and the shortage of energy 
[7]. The approaches have been to compress models 
with quantization, pruning and knowledge 
distillation but have features that underperform or 
complicate retraining. Others have considered the 
application of TinyML and lightweight 
convolutional networks including MobileNet and 
SqueezeNet to biomedical applications [8], but still 
leave behind ultra-low power consumption and 
event-asynchronous processing. In this regard, the 
neuromorphic computing comes as a very 
appealing alternative. It is event-driven and this is 
well suited to the parsimonious, time-sledded 
nature of biomedical signals, providing the 
promise of high precision, minimal latency, and low 
power consumption, which are central to wearable 
and implantable healthcare systems. 
To conclude, the existing traditional and deep 
learning-based methods have demonstrated a lot 
of success in the area of biomedical signal 
classification, but they are not necessarily 
optimised in terms of energy-efficient model 
implementation on edge devices. A new and 
biologically inspired framework, the neuromorphic 
computing, especially with the help of platforms 
like Loihi and BrainScaleS, is an emerging 
approach to alleviate the existing deficiencies: they 

will allow intelligent, real-time, and adaptive signal 
processing on edge-devices. Nevertheless, its use 
in the real-time biomedical classification of signals 
is a point of unexplored correlation, a visible gap in 
the research, as well as a potential area of 
innovation. 
 
3. Proposed Methodology 
The ideas on the design and implementation of the 
proposed bio-inspired neuromorphic framework 
of real-time biomedical signal classification are 
explained in this section. The architecture of the 
methodology consists of two key sections, which 
include the system structure and implementation 
into an edge neuromorphic platform. 
 
3.1 Architecture of the system 
The model proposed here will behave like the 
biological brain, i.e. in a sparse, event-driven low-
power style. It consists of three major modules: a 
data acquisition layer, a signal preprocessing 
pipeline and a spiking neural network (SNN) 
model. Proposed SNN pipeline: block diagram. 
Preprocessing (filtering, normalization and spike 
encoding) of raw biosignals is performed and the 
resulting data is then fed to convolutional layer, 
pooling and fully connected layers sequentially. A 
spiking neural network using spike-timing-
dependent plasticity (STDP) is then used to make 
the final classification. 

 

 
Figure 1a. System Architecture of the Spiking Neural Network (SNN) for Biomedical Signal Classification 

 
Data Acquisition Layer 
Wearable biosensors expressed on portable health 
monitoring devices measure biomedical signals, 
namely, electroencephalogram (EEG) and 
electrocardiogram (ECG). Such sensors output 
continuous analog signals that are converted to 
digital using low power ADCs (Analog-to- Digital 
Converters). In case of EEG, the signals of several 
channels (e.g., 832) measure the fluctuations in the 
voltage on a person scalp, but the ECG sensors 

measure the electrical activity of a heart over time. 
The signal used is normally sampled between 128 
Hz and 512 Hz depending on the clinically used 
application and sensor setup. 
 
Preprocessing Module 
Raw biosignal is prone to artifacts and noise that 
includes muscle actions, electrode motion and 
electrical activity of the environment. Thus, 
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preprocessing step is used to improve a signal 
quality. The party involves: 
• Band-pass filtering (e.g. 0.5-40 Hz EEG, 0.5-

100 Hz ECG) in order to extract the required 
frequency components. 

• Min max normalization or Z-score 
normalization so as to have a uniform input 
distribution when spike encoding. 

• Spike Conversion: Time coding based 
schemes are used to convert the 
denoised/normalized signals into spike 
trains. This paper deals with a temporal 
coding mechanism using rates, i.e., that the 
amplitude of the signal is coded into spike 
frequency or latency coding which involves 
the magnitude of the signal affecting the 
timing of the spikes. Such techniques encode 
continuous signals into a time sequence of 
spikes to process them by an SNN. 

 
SNN Model Design 
The general model of computations is multi-layer 
spiking neural network. The design of the 
architecture is done in the following way: 
Neuron Model: This is a neurone model that is 
used to recreate the behaviour of biological 
neurones through the simulation of the Leaky 
integrate-and-fire (LIF) model. Every neuron adds 
incoming spikes and emits fire when its membrane 
is raised past a threshold, and then leaves through 
reset. 
Layer Configuration: The model includes input 
layers, which encodes spike trains, layers that 
extract local patterns using convolution and layers 

that select part of the spike trains using spike-
based pooling and denser global connections using 
fully connected layers extraction and finally an 
output layer to classify the input as a spiking 
output layer. 
Learning Mechanism: The network makes use of a 
learning rule which is known as Spike-Timing-
Dependent Plasticity (STDP), a form of online, 
unsupervised learning rule. STDP modifies the 
synaptic weights according to temporal correlation 
between spikes post- synaptic and pre-synaptic so 
that the network can adopt new patterns with 
time. 
This architecture has been made to utilize the 
event-driven and sparse nature of biomedical 
signals so that it performs well in relation to 
rapidly responding to big changes or completely 
ignoring redundant or dormant ones. 
 
3.2 Edge Deployment 
In order to verify the feasibility of the proposed 
system into potential real-life edge healthcare 
applications, the entire neuromorphic model is run 
and evaluated on edge inference hardware 
platforms. An example of principle of spike 
encoding of analog EEG/ECG signals. The upper 
panel indicates the original data of the biosignal 
with a fixed threshold. The spikes are time marked 
at the middle panel using the crossing of 
thresholds and the results of such crossings are 
summarised at the bottom panel in the form of the 
spike train which may now be converted into the 
form of spiking to be processed in the SNN. 

 

 
Figure 1b. Temporal Spike Encoding of Biomedical Signals 
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Hardware Platform 
This is in the context of the primary deployment 
target, Intel Loihi neuromorphic chip, a manycore 
processor with programmable LIF neurons, and 
on-chip learning, and an energy-efficient spike 
routing. One core is a collection of spiking neuron 
compartments that can be configured with 
arbitrary synapses and routing circuits that are 
optimized to use event-driven operation. As a 
comparison, baseline CNN-LSTM models are run 
on a low-power embedded microcontroller 
platform (on ARM Cortex-M4), giving a hint as to 
power consumption, memory footprint, and 
inference latency independent of underlying 
hardware. 
 
Software Framework 
Its implementation is performed as a Nengo 
simulation framework along with Loihi NxSDK. 
Nengo gives a user-friendly environment to specify 
SNNs and to simulate their dynamics, whereas 
NxSDK enables users to access lower-level 
capabilities of the Loihi hardware, including real-
time spike communication, STDP 
parameterization, and performing calculations 
within a set of neurons. The trained models of SNN 
are in simulation and compiled and mapped to 
Loihi to deploy. 
 
Latency Optimization 
The system exploits an asynchronous nature of 
spike-based computing in order to achieve real-
time responsiveness. Contrary to a traditional 
synchronous system, Loihi works differently by 
being event-driven, that it is, the neurons will only 
process inputs when the spikes come. This reduces 
idle power and allows inference latency to go 
below a millisecond. Moreover, the computation is 
always done in parallel cores of Loihi, extending 
the throughput and allowing classifying the 
streams of biomedical data with more channels in 
real time. 
Such an approach gives confidence that the 
suggested system not only classifies biosignals 
accurately but does it in a power-efficient and 
hardware-aware manner, which turned out to be 
an immensely important feature of next-generation 
wearable and implantable healthcare technologies. 
 
4. Experimental Setup 

In order to prove validity of the proposed 
neuromorphic framework in real-time 
classification of biomedical signals, scientific 
experiments are carried out with classical clinical 
data and clear evaluation measures. The system is 
designed to resemble real-life edge deployment 
conditions and be limited by energy, latency, and 
memory. 
 
4.1 Datasets 
The designed experiment relies on two standard 
biomedical signal databases adopted in clinical 
machine learning and neuromorphic studies: 
 
EEG Dataset – CHB-MIT Scalp EEG Database 
This is an EEG scalp record distributed by the 
Massachusetts Institute of Technology and it is a 
multi-channel with pediatric epilepsy record 
collected at the Children Clinics of the Boston 
hospital. EEG long-term data as well as seizures 
have been tagged into patient records. The 
International 10-20 signal recording system at 23 
EEG electrodes and 256 Hz sampling rate is 
utilized. In regards to this study, preictal, ictal, and 
interictal are selected and segmented on 5-second 
non-overlapping windows. The first two steps 
(denoising and artifact-removal) are performed 
followed by quality assurance; spike encoding 
performed using band-pass filtering (0.5HZ 40HZ). 
 
ECG Dataset – MIT-BIH Arrhythmia Database 
The dataset consists of 48 30-minute long ECG 
signals of 47 individuals as well as beat-by-beat 
annotations of the arrhythmias. All ECGs are 
sampled at 360Hz and prepared as well as 
annotated to be compliant with the AAMI EC57 
standard into the categories of normal (N), 
supraventricular (S), ventricular (V), fusion (F), 
and unknown (Q). In the current research, 3-
second ECG strips with R-peaks as their center are 
clipped and classified. The samples are obtained in 
pairs (equal number of samples) of each class, thus 
making the dataset balanced, and before the 
extraction of the signal, the data is preprocessed to 
remove artifacts and normalized in order to limit 
their effect on the extraction. 
Both the datasets are divided into training, 
validation, testing sets based on patient-wise split, 
to ascertain that the test samples are obtained on 
subjects who are not used in training, guarantee 
the models generalization. 
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Figure 2. Experimental Setup for Neuromorphic and Conventional Biomedical Signal Processing 

Pipelines. 
 
4.2 Evaluation Metrics 
In order to evaluate the functioning of the 
suggested SNN-based solution installed on a 
neuromorphic chip, a number of specially-
designed evaluation metrics is utilized in order to 
guarantee an in-depth and valuable analysis. The 
percentage of the correctly predicated segments of 
the total test segments is used as classification 
accuracy. The score is calculated independently on 
EEG and ECG classification tasks and confusion 
matrices are then employed to assess performance 
of the model more thoroughly in different classes, 
and pinpoint incidents of errors in precision and 
recall, as well as in specific classes. A critical 
performance attribute in edge deployment is 
power consumption, which is expressed in 
milliwatts (mW) as the average power 
consumption in an inference run by the 
neuromorphic processor. The values are 
benchmarked to a typical implementation on an 
ordinary ARM Cortex-M4 microcontroller 
executing CNN-LSTM models. The measurements 
are done based on Intel Loihi embedded energy-

monitoring features through the NxSDK toolkit, 
which provides accurate profiling that takes place 
in a real-time scenario. The latency in inferring is 
the amount of time taken when a signal segment 
has been received and a classification decision 
made. It is also timed in milliseconds by using on-
fertilizer counters and external logic analyzers and 
may emulate real low-latency constraints in 
wearable health monitor devices. Finally, the 
model footprint is a measurement of the memory 
needed to run the compiled model on hardware 
stated in kilobytes (KB). This measurement 
includes all parameters and the hardware run 
buffers. This measure is critical in considering the 
scalability of the model and the ability of the model 
to fit into memory-limited embedded systems, 
including wearables or implantable bio medical 
devices. Along with the overall classification 
accuracy, we calculated precision, recall and F1-
score to check the performance of the classes, with 
an emphasis on imbalance datasets. These are 
metrics that are specified thus: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
____________(1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
      𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
5. RESULTS AND DISCUSSION 
The section contains a comparative study of the 
proposed framework of bio-inspired 
neuromorphic computing against the baseline 
models with four main metrics of classification 

accuracy, power consumption, inference latency, 
and memory footprint. Two biomedical signal 
classification tasks are used a Forest Based seizure 
detection task based on Electroencephalogram 
(EEG) and an Arrhythmia classification task based 
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on Electrocardiogram (ECG) are performed on 
three models: the proposed SNN model 
implemented on the Intel Loihi neuromorphic 
processor, a baseline CNNLSTM model, running on 
an ARM Cortex-M4 microcontroller, and a TinyML 

CNN model optimized to work on embedded 
systems. 
 
5.1 Quantitative Comparison 

 
Model Accuracy (%) Power (mW) Latency (ms) Model Size (KB) 
CNN-LSTM (ARM) 91.2 185 21.0 760 
Proposed SNN (Loihi) 89.8 24 4.5 62 
TinyML CNN 85.6 58 13.0 130 

 
The accuracy of classification obtained in the 
proposed SNN model is 89.8 %, which is inferior to 
the CNN-LSTM model accuracy by 1.4 %, although 
higher than the TinyML CNN one. This outcome 
shows that the neuromorphic direction still has a 
high predictive power despite its radically novel 
structure and power limitations. 
 
5.2. Efficiency of power 
Among the most powerful outcomes is the 
impairment of the high energy efficiency. The 
required energy of proposed Loihi-based SNN is 
only 24 mW whereas 185 mW is required to keep 
the ARM-based CNN-LSTM in operation. This 
converts to more than 8-fold power cost savings, 
which is imperative in wearable and implantable 
biomedical devices that communicate within strict 
energy pretexts. The significant minimization is 
mainly because of the event-driven 
implementation of spiking neural networks where 
computation is merely performed when there are 
spike events, thus removing unwanted 
computations and wasteful power consumption. 
 
5.3 Inference Latency 

The other important real-time biomedical 
application limitation is the inference latency as 
the detection of the anomalies, e.g., seizures or 
arrhythmias, may save lives depending on the 
delay of the inference. The SNN proposed model 
has an average latency of 4.5 ms and is 4.6 more 
times faster than the CNN-LSTM version and nearly 
3 times faster than the TinyML CNN. This is what 
Loihi achieves by making use of asynchronous 
parallel processing and routing of spikes within the 
system to minimize such a delay making the 
system able to respond to input biosignals close to 
instantaneously. 
 
5.4 Memory Footprint 
The memory requirements (called ``memory 
footprint) of SNN model is also very desirable, and 
the size is 62 KB, as compared to the CNN-LSTM 
model (760 KB) and the TinyML CNN (130 KB). 
This design size renders the presented model to be 
highly scalable and well adapted to be used on 
lower powered hardware platforms like wearable 
sensors and low power micro controllers. Also, it 
opens the opportunity of multi-signal processing in 
a single chip without depleted hardware capacity. 

 
Figure 3.1. Metric-by-Metric Comparison of Neuromorphic and Baseline Models. 

Bar plots showing absolute values for accuracy, power consumption, latency, and model size across SNN 
(Loihi), CNN-LSTM (ARM), and TinyML CNN 
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5.5 Model Adaptivity and Learning 
The SNN architecture also has qualitative benefits 
in terms of adaptive learning besides quantitative 
measures. With the addition of spike-timing-
dependent plasticity (STDP) the network can learn 
to respond in real time to the alterations in the 
pattern of the input. This is especially of use in 
biomedical applications where the signal based 
qualities of individual patients might vary as a 
result of medication or activity or their disease 
course. Neuromorphic model can therefore be used 
to provide a flexible basis of personalized health 
monitoring which standard static models cannot. 
 

5.6 Summary and Implications 
n short, proposed neuromorphic system design 
boasts of a very positive trade-off between power, 
accuracy, latency and memory, representing the 
state-of-the-art levels of energy efficiency with 
near parity with conventional deep learning 
models in classification. The ease of real-time, low-
power, and adaptive signaling processing has 
already been demonstrated, promising it as the 
next generation wearable healthcare systems. The 
findings validate their claim that the field of 
neuromorphic computing is biologically realistic, 
but also feasible when it comes to applications in 
edge AI in biomedical engineering. 

 

 
Figure 3.2. Comparative Performance Radar Chart. 

Radar chart highlighting normalized performance across five metrics—accuracy, power efficiency, latency, 
model size, and adaptivity—demonstrating the overall edge-optimized advantage of the proposed SNN 

model. 
 
6. DISCUSSION 
The presented bio-inspired neuromorphic 
framework exhibits a few significant strengths and 
tradeoffs when it comes to a real-time biomedical 
signal classification to make use of in the setting of 
edge-based health monitoring. These outcomes 
support the potential of spiking neural networks 
(SNNs) and neuromorphic devices as realistic 
alternatives to the traditional deep learning design 
in data-limited conditions. 
 
6.1 Advantages 
Among the greatest strengths of the proposed 
methodology is its event-driven model of 
computation that closely resembles the sparse and 
asynchronous firing of the real biological neurons. 
This results in significances energy savings and 

thus the system would strongly support the 
demands of wearable and implantable biomedical 
applications within constrained energy budgets. 
Another added benefit of the biological plausibility 
of SNNs is that it is beneficial in terms of energy-
efficiency but also aids in increasing the 
interpretability of the model, i.e. neural firing 
patterns can be better correlated with particular 
signal features, which may add clinical insight. 
The scalability in the system is another big 
advantage. Because of its 4-Kb lightweight memory 
footprint, and modular spike-based design the 
framework can easily be enhanced with 
multimodal biosignal classification e.g. the addition 
of EEG, ECG, EMG or sensor fusion of physiological 
monitoring devices based on networks of IoT-
devices. In addition, online learning through STDP 
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(spike-timing-dependent plasticity) provides 
flexibility in the system that allows the specific 
tuning of models in real time according to personal 
specifications or patients. 
 
6.2 Limitations 
In spite of these benefits, a number of limitations 
are to be taken into consideration. First, the SNN 
model we proposed shows a trade-off in the 
classification quality hinting towards a near state-
of-the-art accuracy, although it is difficult to draw 
much conclusion based on the current data as 
there are more instances on improvement, 
showing no comparison to a full CNN-LSTM 
baseline, it could not outperform in noisy signal 
conditions or when the dataset is highly 
imbalanced. Such performance disadvantage can 
be explained by the existing limitations of the SNN 
models that do not provide an elaborate 
optimisation pattern and deep representational 
power in contrast to the more developed ANN 
frameworks. 
Secondly, SNN training is a tricky issue, particularly 
in the case of backpropagation-based gradient 
learning. Even though biologically inspired rules 
provide flexibility, e.g. STDP may force fine-tuning 
and might fail to converge in large-scale tasks. In 
addition, SNN training and deployment tools and 
frameworks (e.g., Nengo, NxSDK) are not well 
mature and make simpler use and deployment 
more difficult. 
Finally, there is a practical barrier like hardware 
availability. Neuromorphic chips such as Intel Loihi 
can only be used by the research institutions and 
are not readily available in the masses. This 
restricts the deployment on a larger scale but the 
next generation of commercial neuromorphic 
hardware (e.g.: Intel Loihi 2, BrainChip Akida) 
seems to break this down. 
 
6.3 Implications and Future Outlook 
Placing a special focus on neuromorphic 
computing, the study has made important insights 
into how the technology can transform the world 
of low-power real-time healthcare monitoring. Due 
to the maturity of the neuromorphic hardware and 
the development of training algorithms, the SNN-
based systems may develop into a necessary 
element of the next generation of wearable 
biosignal-processing blocks. Their ability to foster 
adaptive, safe and efficient computing at the edge 
correlates well with trends in decentralized 
computing and AI on chip architectures, 
decentralized diagnostics and remote patient care 
applications around the world. 
 
7. CONCLUSION AND FUTURE WORK 
This paper proposes a bioinspired neuromorphic 
computing paradigm to perform real-time 

classification of biomedical signals, which takes 
advantage of event-based and power-efficient 
properties of spiking neural networks (SNNs) 
hardware running on Intel Loihi neuromorphic 
processor. This scheme is tested on the MSEG and 
MHEALTH datasets as benchmark EEG and ECG 
signals, on which it performs similarly in seizure 
and arrhythmia detection, reaching impressive 
reductions in power consumption, computation 
time, and RAM requirements on a benchmarked 
custom system compared to alternative CNN-LSTM 
or TinyML models.The findings attest to the 
promise of neuromorphic architectures to edge-
based biomedical systems, especially in wearable 
and implantable health sensors whose resource 
limits are very important. Event-driven 
architecture and biologically feasible processing 
model have distinct strengths with regard to 
scalability, explainability, and the ability to cope 
with the variability of practical signals. Besides, 
spike-timing-dependent plasticity (STDP) is also 
included to provide online learning and a 
mechanism to adapt to the individual patient 
physiology during their lifetime.Nonetheless, these 
positive results still struggle with some issues, 
including the minor trade-off of the classification 
accuracy, intricacy of SNN training, and the lack of 
access to neuromorphic hardware platforms. These 
constraints are the possibilities of future studies. 
A parallel effort aims to expand the present 
framework to multimodal biosignal fusion, 
incorporating signals, such as EEG, ECG, EMG, and 
respiratory signals, to provide a more detailed 
measure of physiological activity. Also, we would 
like to add real-time closed-loop feedback to jump 
into actuation of therapeutic applications, this 
might be cardiac pacing, seizure suppression. 
Lastly, the system will be tested under real world 
clinical conditions to justify its robustness, 
reliability, and scalability to deploy at next 
generation digital health systems. 
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