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 The high rate of Very-Large-Scale Integration (VLSI) technology has 
posed great testing problems because of the huge amount and the 
complexity of the signal data produced by the modern integrated 
circuits. In this paper, the authors propose to build a high-throughput 
and GPU-accelerated deep learning framework to further increase both 
the efficiency of VLSI signal processing and precise defect detection in 
the VLSI test. The methodology proposed is combining the mechanism 
of the convolutional neural network (CNN) and long short-term memory 
(LSTM) network in order to extract spatial and temporal characteristics 
in scan test responses. The models will run on GPUs with support with 
CUDA to perform real-time inference, and scalable parallel processing. 
The framework was also tested with synthetic dataset as well as with 
realistic industrial scan data. Experimental findings show that the GPU-
accelerated CNN-LSTM model generates a considerably lower inference 
latency and an impressive increase in both classifications correctness as 
compared to the conventional CPU-only and LSTM model’s instance. In 
particular, the proposed system will achieve more than 6 times in 
processing speed and 6-8 % improvement in the detection accuracy 
with little to no penalties in communication and memory requirements. 
It shows the desirability of the industrial applicability of the application 
of deep learning models to high signal volume signal analysis within the 
context of VLSI flows in order to integrate with well-established uses of 
inline ATE and diagnostic systems. This forms a solid base of real-time, 
scalable, and smart test automation in the semiconductor 
manufacturing of the future generation. 
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1. INTRODUCTION 
The exponential increase of Very-Large-Scale 
Integration (VLSI) technologies has given to rise to 
the fact that now billions of transistors are being 
mounted in a chip and also the fact that the volume 
of test data that is being generated in the 
perspective of scan-chain and functional testing 
processes is increasing exponentially hence 
bringing complexities into the test-data. Rule-
based testing tools and the standard automatic test 
equipment (ATE) are now not adequate enough to 
calculate the volume, variety, and time-demands of 
the existing signal patterns. Besides, with the 
nodes of small-size technology (smaller than 7nm), 
the risk of the occurrence of hidden flaws such as 
the resistive opens, delay fault, and transient soft 
errors is expected, which puts high-performance 
circuits reliability into serious question. According 
to these problems, deep learning (DL) has emerged 
as an effective way of applying the automated task 
of defect recognition through the spatio-temporal 
signal modelling. However, use of DL based 
solutions to VLSI testing has been hampered by 

high per sample computation cost, long inference 
time and inability to scale to real-time, high 
throughput testing environments. 
Most of the literature up to date has been devoted 
primarily to CPU-bound or small-batch inference 
paradigm, not giving it in the form of scalability 
and latency optimized systems suitable to industry. 
Also, there is a lack of research which integrates 
spatial (CNN-based at that time) and temporal 
(LSTM-based at that time) modeling into the 
problem of hardware acceleration presented to the 
problem of end-to-end testing pipeline. The 
contribution of the paper is a high-throughput low 
latency CNN-LSTM based on GPU which is found in 
VLSI testing. The presented framework is 
implemented on CUDA-supplied deep learning 
architectures to detect any defects in real-time of 
any kind of signal classes with significantly more 
efficacy and speed. To the point of interest was 
indicating the growing need of hardware-
maximizing DL models in semiconductor 
manufacturing pipelines, but failed to stress the 
need of efficiency in scan data of high scales via 
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real-time pipelines [1]. The crux of findings of the 
work is: 
• Design of a accelerated CNN-LSTM architecture 

based on GPU. 
• Sendep quantification of both synthetic (ISCAS-

89) and real world 7nm SoC scan chain data. 
• Latency-aware CUDA-implementation with 

pinned memory and asynchronous code 
execution. 

• Quantitative 6 x inference speed up and 6.8 
percent accuracy gain. 

 
2. RELATED WORK 
Due to recent breakthroughs in VLSI testing, recent 
works have harnessed the ability to use statistical 
machine learning (ML) like support vector 
machines and decision trees and naive Bayes 
classifiers as a mode to predict defects. Although 
the results of these models present some success 
to the known types of faults, they fail miserably to 
generalize when applied to unfamiliar signal 
patterns, particularly in the situations with noise, 
variability, and processes-induced drifts. This 
drawback does not allow their use in 
circumstances where the data is high-dimensional 
and temporally irregular which is viewed in real-
world testing scenarios. In order to curb these 
inefficiencies, deep learning models especially 
CNNs and LSTMN models have appealed. It has 
been shown that CNNs are particularly good at 
learning spatial hierarchies and toggling fault 
characteristics of the response to a scan, LSTMs are 
better at modelling sequential signal dynamics and 
characteristic oddities depending on delays. 
Potentially significant gains in test accuracy, and 
fault isolation granularity, have been reported in 
hybrid CNN-LSTM models. 
As far as hardware acceleration is concerned, field-
programmable gate arrays (FPGAs) have been 
employed on parallel processing with test 
applications. FPGAs usually feature complicated 
design processes, weak flexibility after the 
deployment and increased development cost. 
Alternatively, Graphics Processing Units (GPUs) are 
flexible and have large-scale parallelism and 
simplicity of integration with contemporary deep 
learning frameworks. In spite of this promise, the 
literature provides little coverage in terms of GPU-
accelerated deep learning networks that are 
optimized towards high-throughput VLSI signal 
analysis. In particular, there is still a large gap in 
the use of real-time, end-to-end DL pipelines on 
GPU systems which can support terabyte scale scan 
data given industrial requirements of low latency 
and high coverage of faults. In contrast to the CNN-
only or FPGA-bound of the past our framework 
does not only integrate CNN & LSTM layers but 
leverages GPU pipeline by combining CNN and 
LSTM implementation explicitly via CNN and LSTM 

layers and optimizing temporal and spatial 
characteristics of our model perfectly suited to 
large-scale industrial test systems. 
 
3. METHODOLOGY 
In this part, the architecture, building blocks, and 
computing approaches that are applied in the 
suggested GPU-accelerated deep learning model of 
high-volume VLSI signals processing will be 
described. The methodology implies three key 
elements namely signal preprocessing, a hybrid 
deep learning model based on CNN and LSTM to 
conduct classifications of the defect types, and GPU 
acceleration to execute inference in real-time. 
Figure 1 shows the entire pipeline. 
 
3.1 Signal Preprocessing 
Scan chain data used in modern VLSI test streams 
are typically corrupted with noise, data jitter and 
format inconsistency, which may be harmful when 
learning a model. To solve that, a Signal 
Preprocessing Module normalizes, segments and 
frames the raw scan response signals into a 
structure input sequence that is useful in deep 
learning based inferences. The module carries out: 
• Normalization of amplitudes in order to 

minimize variations in the scale, and highlight 
relative differences among signal traces. 

• Segmentation by sliding window to retrieve 
local fault signatures in a separate direction 
through time. 

• Padding and framing in order to provide 
standard size of input during the batch 
processing. 

This preprocessing guarantees that the spatial and 
temporal patterns in the signals are saved and 
effectively expressed towards further analysis. 
 
3.2 CNN-LSTM Model Architecture 
The main part of the suggested framework is a 
hybrid deep neural network combining the CNN 
and LSTM networks that combines both feature 
extraction power of convolutional networks with 
the sequence modeling power of recurrent neural 
networks. The building is comprised of: 
• Convolutional Neural Network (CNN) Layers: 

Obtains patches of information along with 
spatial patterns in framed sections of signal. 
The characteristics of glitches, spikes, or 
unusual change in voltage implying defects, 
such as (e.g., bridging or crosstalk faults), are 
detected based on 1D convolutions and ReLU 
activations and pooling. 

• Long Short-Term Memory (LSTM) Layers: 
These recurrent layers capture long term 
relationships with a sequence of test vectors 
thus allowing the network to learn time-
linked behavior like delay faults or signal 
drifting. Back and forward LSTM cell 
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enhancements are deployed in order to 
sustain the context in these two temporal 
orders. 

• Fully Connected Output Layer: A dense layer 
having softmax activation is used to perform 
multi-class classification of different types of 
faults i.e. stuck-at, transition, and bridging 
faults. 

The CNN-LSTM framework is a solid end-to-end 
learning paradigm covering both low-level 
abnormalities in the waveform and the high-level 
dependence over time in scan data. 
 
3.3 GPU Acceleration and Optimization 
To allow scalable and real-time inference, the 
training and the inference pipeline is deployed on 
CUDA supported GPUs using PyTorch as the back-
end based deep learning system. A number of 
optimization methods are used: 

• CPU & GPU Cores: The use of GPU cores to train 
on multiple signal sequences at the same time, 
having a massive speed increase in the training 
process as well as in the prediction. 

• Pinned Memory and Custom Data Loaders: A 
custom high-throughput data loader streams 
signal batches, between disk and GPU, in 
pinned (page-locked) memory, to reduce the 
latency of data transfer, and to achieve a high 
input/output throughput. 

• Asynchronous Execution and CUDA Kernels: 
Asynchronous execution of memory operations 
and computation exploits the complete 
concurrency of the modern GPUs (e.g. NVIDIA 
Ampere architecture). 

Such an optimized scheme of GPU makes the 
system scalable to terabyte level test sets with 
inference rates and throughput capable of 
operating in an industrial test automation setting. 

 

 
Figure 1. CNN-LSTM-Based Defect Classification Pipeline for VLSI Signal Testing 

 
The following diagram shows an end-to-end 
pipeline of a hybrid CNN-LSTM design of defect 
classification in VLSI scan chain signal data. 
Preprocessing of signals is the initial stage that 
involves normalization, segmentation as well as 
framing of scan chain data. It is then followed by 
the CNN-LSTM model architecture, where the 
spatial features are extracted with the help of CNN 
layers, and the temporal dependencies are 
captured with the help of the LSTM layers in order 
to predict the fault types. Lastly, GPU acceleration 
in CUDA is applied to the model with parallelism 
occurring on the batch level in order to provide 
inference capability in real time. 
 

4. Dataset and Experimental Setup 
This section provides the information of the 
datasets that are used to train the models and test 
it, the metrics used to validate the proposed GPU-
accelerated CNN-LSTM framework to classify 
defects in VLSI signals, and the experimental 
environment of the proposed framework. 
 
4.1 Dataset Description 
Two sets of data were used to thoroughly analyze 
the generalizability and robustness of model, 
namely: 
• Synthetic DataSet: 
A benchmark set such as SPICE-level simulations 
on the standard ISCAS-89 benchmark suite, which 
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are established as combinational and sequential 
logic circuits (widely used in VLSI test research). 
Stuck-at, transition, bridging, and delay defect 
types of faults were methodically inserted. All the 
scan response signals were kept with high 
resolution along with metadata identifying the 
fault type and location. Signal traces were 
denormalized and segmented according to 
preprocessing pipeline, pointed out in Section 3.1. 
• Datasheet on Industry: 
An industrial partner supplied a proprietary 
dataset that consists of scan chain responses of a 
7nm FinFET-based System-on-Chip (SoC) design 
reproduced in realistic working circumstances. The 
dataset contains annotated failure traces over 
various manufacturing lots and various test modes, 
providing real world variability in signal integrity, 
environmental noise and fault signature. These 
data are used to test the functionality of the model 
in the real-world scenario which is not ideal. 
 
4.2 Evaluation Metrics 
To evaluate the quality of the proposed framework 
classification as well as computational 
performance, the following measurements were 
taken: 
Metrics of Classification: 
• Accuracy: Fraction of the proportion of 

correctly classified signal sequences to all 
sequences. 

• Precision and Recall: Measured on a fault-by-
fault manner to encapsulate the capability of 
the model in the reduction of false positives 
and false positives, respectively. 

• F1-Score: The harmonic mean of precision 
and recall, it gives a relative performance 
between the proportion of each entity of the 
different categories of faults. 

The Computational Efficiency Metrics: 
• Throughput (MB/s): Measured at how much 

signal data the system is able to process 
through during inference, a measure of how 
much the system can be scaled. 

• Inference Latency (ms): The time the model 
needed to make a classification call on a 
singular scan sequence, which is of the 

essence where time restrictions are the test 
environment. 

• GPU Utilization (%): It averages the 
percentage of the live GPU compute cycles 
used running the model, which can tell us 
something about the efficient use of the 
hardware resources. 

• Memory Overhead (MB): How much GPU 
memory is used up during the inferencing 
process, which is useful when one is 
deploying the model into an embedded and 
constrained test environment. 

The experiments were carried out on NVIDIA A100 
GPU device (PyTorch 2.0, CUDA 12.2 support). 
Several experiments with different batch sizes and 
sequence lengths were carried out in order to 
capture the sensitivity of workload. 
 
5. RESULTS AND DISCUSSION 
To evaluate the performance of the given GPU-
accelerated CNN-LSTM model of high-volume VLSI 
defect identification, extensive experiments were 
realized on both synthetic and industrial scan 
chain data. Measures of performance in terms of 
accuracy, inference speed, F1-score, and GPU 
utilization were compared under 3 models, i.e. 
CPU-LSTM, GPU-LSTM and GPU-CNN-LSTM. 
 
5.1 Performance Comparison 
In order to provide comparisons on effectiveness 
of architecture of models on a VLSI defect 
classification, three model setups CPU-LSTM, GPU-
LSTM and GPU-CNN-LSTM were benchmarked 
with four main performance indicators that 
included accuracy, inference speed, F1-score, and 
GPU utilization. 
Table 1 demonstrates the numerical comparison of 
performance and Figure 2 implies visualization of 
the same. The best results in terms of accuracy 
(93.1%) and F1-score (0.92) belong to the GPU-
CNN-LSTM model with a significant inference 
speed of 76 MB/s and high GPU use (78%). As 
compared, the Rock-LSTM model lags on all 
metrics proving the efficiency of GPU acceleration 
and CNN feature extraction. 

 
Table 1. Performance Comparison of Deep Learning Models for VLSI Defect Classification 

Model Accuracy (%) Inference Speed (MB/s) F1-Score GPU Utilization (%) 
CPU-LSTM 88.2 12 0.86 N/A 
GPU-LSTM 90.4 53 0.89 65 
GPU-CNN-LSTM 93.1 76 0.92 78 
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Figure 2. Performance Metrics Comparison across Models 

 
The findings made in this direction with respect to 
convolutional layers and execution on GPUs are 
clearly pointing out that these systems produce 
better classification results to be deployed even in 
real-time scenarios. 
 
5.2 Latency and Feasibility in Real-Time 
Systems 
Latency analysis depicted that GPU-CNN-LSTM is 
held by average delay of 2.3ms/1MB of test vector, 
and is within a reasonable echelon to be 
incorporated with inline Automated Test 
Equipment (ATE) environments. A 6.8% increase 
in the classification accuracy and an inference 
throughput 6.3 times above the CPU-LSTM baseline 
is evidence that the model is durable and 
appropriate in a high-speed defect screening in 
industrial settings. 
 
5.3 Comparative Interpretation 
The proposed feature is a combination of CNN and 
LSTM and it performs much better in comparison 
to the traditional methods of deep learning, which 
are based on CPU-bound training compared to the 
previous methods involving the use of LSTM or 
SVM-based classifiers only [2][3] in terms of: 
• Reach spatial glitches by convolutional 

filtering, 
• Predict sequence temporal dependencies 

through LSTM, 
• Use parallelism to promote throughput and 

responsiveness using GPU. 
Depending on such advancements, it is now 
possible to use deep learning models on hardware-
in-the-loop (HIL) test benches where low latency 
and high classification fidelity are essential. 
 
5.4 Discussion Summary 
The given solution can be easily incorporated into 
current production testing flows without moving 
the heavy infrastructure. 

• The CNN-LSTM with GPU acceleration shows 
improvements over all the essential metrics 
compared to baseline approaches. 

• The model can exist on real time in-line defect 
classification, a critical aspect in the 
contemporary VLSI manufacturing lines. 

• GPU utilization observed (78%) is a good sign 
of hardware resources' use and additional 
adjustment of the batch can be made. 

 
6. CONCLUSION 
In this paper we introduce a high throughput, non-
GPU accelerated deep learning framework 
customized to VLSI scan test analysis. The 
proposed architecture incorporates both time 
dependencies and spatial features by combining 
Convolutional Neural Networks (CNNs) to learn 
spatial features and Long Short-Term (LSTM) 
models in order to learn temporal dependencies 
effectively classifying anomalies in signal and 
defects in large-scale scan chain data. On CUDA-
enabled GPUs, the system obtains a 6.8% increase 
in classification accuracy, an F1-score of 0.92 and 
greater than 6x speed-up in inference, with 
average latency of 2.3 ms per MB of data compared 
to typical CPU-based LSTM models. The test of the 
model proves that it could be applied to the real-
time, inline testing. The outcomes make the 
proposed architecture GPU-CNN-LSTM a scalable, 
and the production-able solution for next-
generation, intelligent VLSI testing pipelines. The 
architecture works effectively and is intended to 
work alongside the existing Automated Test 
Equipment (ATE) and diagnostic platforms, which 
are becoming high-throughput and low-latency 
required in the current semiconductor 
manufacturing lines. 
 
7. FUTURE WORK 
To make further improvements to the robustness, 
generalizability, and adaptability of the suggested 
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framework, a range of research directions is 
determined: 
• Transformer-Based Temporal Modeling: The 

future plans include the examination of 
transformer-based models with attention 
mechanisms to enhance defect detection of 
time-series test input in time-dense complex 
SoCs designs. 

• Online and Incremental Learning: This 
framework will be augmented, extending it to 
also support online learning, so that the 
model can be dynamically updated with each 
new test pattern and allow adaptive testing 
schemes to run in dynamic production 
environment. 

• Semi-Supervised and Self-Supervised 
Learning: Since there are few fully labeled 
industrial scan datasets the next step is 
research into semi-supervised and self-
supervised learning paradigms where labeled 
and unlabeled data are used to improve 
modeling of low-label tasks. 

• Sparse Labels and- Fitting with Sparse Labels: 
Fundamental domain-adaptive fine tuning on 
a limited number of known labels on new 
hardware platforms will be studied to 
enhance generalization of defects across a 
wide variety of silicon designs and testing 
modes. 

• Hardware-in-the-Loop (HIL) Implementation: 
The implementation on the real time HIL test 
benches will be explored with a view to 
making reviewing of the System-on-Chip 
(SoC) designs live before moving into the 
production environment level problems. 

The directions are intended to convert the current 
structure to an entirely autonomous, data-efficient, 
and intelligent testing system, which would be 
adaptable to variations in processes, aging-induced 
failures, and label-scarce environments, and would 
be scalable and reliable over the long run-in 
complex semiconductor fabrication lines. 
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