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 The expanding pressure of urban activility and congestion has led to the 
evolution of intelligent transportation systems (ITS) that are taking 
recourse to real time video ways to either be more efficient in their 
operations and maintain public safety. In this research, a scalable edge-
based design that could facilitate distributed and low latency video 
processing is presented to power smart transport networks. The new 
system will implement the containerized modules of analytics which 
will be deployed on edge nodes placed at any intersection points or 
roadside units to provide on-site detection of objects, and mult-object 
tracking. The hybrid video processing pipeline is used such that it 
incorporates convolutional neural networks (CNNs) and lightweight 
tracking algorithms (e.g., DeepSORT) in order to provide high 
performance but be efficiently computable on resources-limited devices. 
In order to assess the performance of the system, the task of testing 
latency, throughput, and scalability was realized using real-world traffic 
video sets. As experimental results demonstrate, there is a 45 percent 
end-to-end latency reduction with a 60 percent reduction in a 
bandwidth used in the cloud as opposed to centralized cloud processing 
models. The architecture was also proved to be invariant to object 
detection and frame processing rate when faced with greater camera 
loads. The study validates the possibility of implementing edge-oriented 
intelligence in intelligent transportation systems to allow incidents to be 
detected and identified quicker, rely less on cloud systems and scale 
better. The suggested framework has given the future edge-to-cloud 
integrated ITS deployment an initial framework, which requires real-
time response and resource optimization efficiency. 
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1. INTRODUCTION 
The congestion of the urban traffic, poor and 
inefficient management of the signs, and the threat 
of the road safety are the issues that have been 
constantly present in the contemporary urban 
setting. The need of the intelligent transportation 
systems (ITS) that can have the real-time 
situational awareness and decision-making has 
increased with rapid growth in vehicle density and 
population. To that end, video-based analytics has 
become a potential solution to ITS, with some of its 
structural features being capability to optimize the 
traffic flow, detect incidents, as well as adaptive 
signal management. Nevertheless, video analytics 
architecture that is currently popular is based on 
the cloud, where the problem is quite significant 
high communication latency, high bandwidth 
consumption, and the need to address the issues 
related to data privacy and reliability. Such 
constraints are of crucial importance in latency-
insective transportation applications in which 
immediate reaction times are crucial to ensure 

population safety. Furthermore, the centralized 
solutions are not scalable when they are 
implemented in large scale with respect to a high-
resolution video stream at urban intersections. The 
most recent experiments have investigated edge 
computing and its ability to perform video 
analytics nearer the source of information thereby 
enhancing responsiveness and lessens reliance on 
the cloud [1]. However, most of such solutions do 
not have scalable architecture and effective 
distributed edge node coordination mechanisms. 
There is also an untapped trade-off between real-
time optimality and computational capabilities of 
the edge devices. 
In this paper, the edge and scalable architecture 
based on real-time video analytics of smart 
transportation systems are proposed. The system 
makes use of the low-weight containerized 
analytics modules hosted in edge nodes, and it is 
capable of distributed coordination and horizontal 
scalability across various points of traffic 
monitoring. 
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2. RELATED WORK 
The current state of edge computing has allowed 
the implementation of an on-site processing 
capability of sensor and video input in urban 
public transport. Edge-assisted video analytics 
solutions have been suggested to support real-time 
object detection [2], traffic flow estimation [3], and 
anomaly detection [4] and state the use of deep 
neural networks to process visual streams locally 
or locally next to the data source. Such strategies 
facilitate a significant decrease of latency and 
improve network congestion as opposed to cloud-
only architectures. Most of the available systems 
are characterized by some fundamental limitations 
irrespective of their contributions. Firstly, most of 
them are based on fixed-function hardware or fixed 
analytic pipelines that lack scaling to different 
traffic densities or several intersections. Second, 
horizontal scalability and synchronization between 
distributed edge nodes is seldom concerned, so the 
system expansion is inefficient in large-scale 
deployments. Third, optimisation in terms of 
computational cost and detection accuracy is also 
most frequently ignored in the face of varying 
camera loads, where limited edge resources may 

result in variable performance or processing 
latency. 
Such gaps reflect the importance of a dynamic, 
scalable, modular edge-based architecture that can 
both expand to meet varying workloads and 
ensure real-time analytics, as well as enable 
processing multi-node systems that are 
geographically distant. These issues are resolved in 
this paper which proposes a scalable edge video 
analytics system that is lightweight and can meet 
the requirements of smart transportation 
infrastructures. 
 
3. System Architecture 
This part describes the main elements of the 
introduced scalable edge-based solution of the 
real-time video analysis in smart transport 
systems. The system is focused on modularity, low 
latency, and horizontal scaling in order to advert to 
high-throughput analytics to numerous 
intersections in an urban setting. Figure 1: Scalable 
Edge-Based Video Analytics Architecture for Smart 
Transportation shows the general structure of the 
working system. 

 

 
Figure 1. Scalable Edge-Based Video Analytics Architecture for Smart Transportation 

 
Architectural diagram showing the implementation 
of edge nodes to do real-time traffic video 
analytics. Traffic cameras are connected to specific 
edge nodes with GPU acceleration on which the 
video ingestion, preprocessing, object detection 
and object tracking are done. Metadata is 
processed and reported to a cloud dashboard 
and/or a regional coordinator using MQTT or 
RESTful APIs and used in an aggregated monitor 
and control application. 
 
3.1 Edge Node Design 
Each edge node is constructed on a GPU-enabled 
microserver platform like the NVIDIA Jetson TX2 
that can run its many deep learning tasks in real 

time. The node executes containerized services 
implemented through the Docker to guarantee 
modularity and simplicity of sharing. The analytics 
pipeline consists of a number of essential modules: 
(i) the video ingestion module that processes 
streams in real-time coming either directly from 
traffic cameras or after the preprocessing; (ii) the 
preprocessing module that scales frames and 
removes irrelevant objects; (iii) the object 
detection module that detects vehicles and people 
using a light model of YOLOv5 as object detectors; 
and (iv) the multi-object tracking module that 
outputs or updates identity consistent across the 
frames. The stack is a low latency modularised 
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software designed to be executed using low 
computational resources at the edge. 
 
3.2 Communication Model 
The system embraces a mixed communication 
paradigm that incorporates the MQTT, a 
lightweight message queuing strategy, and the 
RESTful APIs, a structured data exchange scheme. 
This allows real time co-ordination among edge 
nodes, regional controllers and management 
dashboards running in the cloud. The inter-node 
communication allows transferring incidence (e.g. 
congestion, accident) and also joint decision 
making including adaptive signal control or 
rerouting recommendations. The communication 
model also enables edge-cloud data gathering so 
that offline analytics and long-term storage can be 
done offline without bringing the performance to 
the knees. 
 
3.3 Scalability Mechanism 
The architecture has a horizontal scaling 
mechanism, which allows facilitating the 
implementation within large transport 
infrastructures. The dynamic classification of new 
edge nodes can be expanded by using geography 
(e.g. intersections and corridors) or system load 
(e.g. increased rates of video feeds). With a 
distributed task scheduler, the intelligently 
dynamically balancing loads and migration of tasks 

between nodes is possible not only because of 
resource availability and quality of streams. This 
design has the benefit of being sustaining with a 
constant throughput and fault tolerance, with 
variable workloads and hardware constraints. 
 
4. METHODOLOGY 
The section describes the experimental procedure 
that was used to test the proposed edge-based 
video analytics system to apply it in smart 
transportation systems. This methodology will 
include the process of choosing data sets, setting 
up the model, implementing the system, and 
assessment measures. 
 
4.1 Video Dataset 
As an example of the out-of-the-box application of 
the discussed system, it was tested on real-time 
traffic video footage of the AI City Challenge 
Dataset (Track 1) in order to replicate the real-life 
urban traffic conditions. This data source offers 
high-definition video feeds recorded in various 
intersections, with a variety of traffic scenarios 
such as different levels of vehicles, people, and 
lightings. The realistic temporal evolution and high 
annotations nature of the dataset render it suitable 
in benchmarking the level of object detection and 
tracking in smart cities. The schematic description 
of the organization and main peculiarities of the 
dataset can be viewed at Figure 2. 

 

 
Figure 2. Schematic Overview of AI City Challenge Dataset (Track 1) Utilization 

 
The diagram represents the structure and 
fundamental properties of the video dataset 
proposed in the given smart transportation 
analytics system. The datasets were taken mainly 
in the form of the AI City Challenge Dataset (Track 
1), which provides high-resolution videos that are 
shot at several intersections. It has a wide range of 
traffic conditions, such as different densities of 
vehicles and pedestrians and different brightness, 

so it is perfect to use it to compare the 
performance of detection and tracking objects. 
 
4.2 Model Architecture 
The edge analytics pipeline draws two 
fundamental deep learning elements, as shown in 
Figure 3: Edge-Based Video Analytics Pipeline with 
YOLOv5 and DeepSORT. 
• YOLOv5: This is a light weighted version of 

the You Only Look Once object detector, 
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YOLOv5 was chosen because of its fast 
inference speed and ability to detect small to 
medium size size objects e.g. vehicles and 
pedestrians. It also supports deployment via 
TensorRT on NVIDIA Jetson TX2 devices with 
the real-time inference capabilities. 

• DeepSORT: In tracking of multiple moments, 
DeepSORT (Simple Online and Realtime 

Tracking with a Deep Association Metric) was 
used. It uses motion and appearance to apply 
consistent identities between video frames, 
permitting persistence in trajectories despite 
partial occlusion as well as high objects 
density. 

 

 
Figure 3. Edge-Based Video Analytics Pipeline with YOLOv5 and DeepSORT 

 
The figure represents the edge analytics pipeline of 
a real-time video analysis in the smart 
transportation systems. It starts with YOLOv5 as 
object detector, and moves to TensorRT to optimize 
inference on embedded hardware. Optimized 
outcomes are afterwards supplied into DeepSORT 
modules to perform multi-point tracking, and the 
trajectory association is secure with diverse traffic 
circumstances. 
 
4.3 Evaluation Metrics 
The effectiveness of the system and its operational 
viability were analyzed using the key evaluation 
measures depicted in the Figure 4: Key Evaluation 
Metrics of the Edge-Based Video Analytics: 
• Latency (ms): Measurement of end to end 

processing delay between frame capture in 

video to a final detection and tracking result at 
the edge node. 

• Accuracy (Intersection over Union, IoU): 
measures the precision of the detection to look 
at how consistent the bounding boxes that are 
speculated compare with the annotation of the 
real thing. 

• Bandwidth Usage (Mbps): The performance 
measurement that tests network performance 
by observing the average rate in which edges 
nodes to the cloud pass the intended data. 

• System Scalability: Examines how well the 
system does, relative to the amount of edge 
nodes that are currently on and active, 
particularly throughput stability, how well tasks 
are offloaded, and response times. 

 

 
Figure 4. Key Evaluation Metrics for Edge-Based Video Analytics 
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This figure represents the four major metrics 
applied to figure out the performance of the edge-
based video analytics system: (1) Latency (ms) - 
determines processing delay, end to end; (2) 
Accuracy (IoU) - calculates the accuracy of 
detection given using the Intersection over Union; 
(3) Bandwidth Usage (Mbps) - indicates the 
efficiency of the network on the basis of the rate of 
data transmission; and (4) Scalability of the 
System- scores the system based on the ability to 
effectively process multiple concurrent edge nodes. 
All these metrics give a complete overview of how 
feasible the proposed architecture would be in 
deploying in latency-sensitive urban traffic 
monitoring applications of large scale. 
 
5. RESULTS AND DISCUSSION 
The comparative analysis of the performance 
analysis of the usual cloud-based processing and 
the proposed edge-based video analytics 
architecture shows the significant improvement in 
some of the most relevant parameters. The average 
latency of edge-based deployment was brought 
down to 260 ms, which is 45.8 percent less than 
that of 480 ms of the cloud-based model as 
presented in Table 1 and shown in Figure 5. This 
high degree of reduction evidences the benefit of 
local inference abilities, which preclude the round-
trip communications time lag usually involved in 
cloud offloading. Also, edge-based system has a 
bandwidth utilisation of 5.0 Mbps, which is far 

below the capacity of continuous video streaming 
to the cloud of 12.3 Mbps. Its performance is 
largely attributed to the fact that metadata is 
processed locally and not raw video locations, and 
thus the solution is ideally suited even where 
bandwidth is a concern in a smart city 
environment. 
Although, the accuracy of object detection had 
dropped slightly to 87.9% when implemented 
through edge devices with limited compute 
capabilities compared to a higher percentage of 
88.4% when implemented through the cloud. Such 
trade-off confirms the efficiency of the lightweight 
YOLOv5 model optimized with TensorRT to 
perform real-time edge inference. The system 
architecture, which includes the edge-based one, 
supported 19 fps compared to the 14-fps achieved 
by the cloud configuration in throughput 
performance. This will make the process of video 
analysis much smoother as well as help the system 
process more intense traffic situations without 
dropping the frames or experiencing delays. 
Furthermore, the scalability of the architecture 
was confirmed by conducting multi-node 
simulations, where the frame rate and latency did 
not worsen, when more edge nodes were added. 
This proves the strong ability of the system to be 
used in distributed deployments, which 
strengthens its possible wide-scale usage on urban 
traffic monitoring and smart transportation 
propositions. 

 
Table 1. Performance Comparison between Cloud-Based and Proposed Edge-Based Architectures 

Metric Cloud-Based Proposed Edge-Based 
Average Latency (ms) 480 260 
Bandwidth Usage (Mbps) 12.3 5.0 
Object Detection Accuracy (%) 88.4 87.9 
Frame Processing Rate (fps) 14 19 

 

 
Figure 5. Comparison of Cloud-Based vs. Edge-Based Architecture 
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6. CONCLUSION AND FUTURE WORK 
The proposed work in this study is a flexible edge-
based framework that is suitable to real-time video 
analysis in smart transportation systems. The 
framework under consideration dramatically 
lowers latency, bandwidth use, and allows making 
real-time decisions based on local context at the 
edge of the network by offloading computational 
tasks to edge nodes that are either closer or even 
at the data source rather than running them on 
centralized cloud servers. Such features are 
especially beneficial to signal-sensitive systems 
like traffic surveillance, incident reporting, and 
flexibility of signals in the city. 
The fact that the architecture promises to reach 
high detection accuracy and frame processing rates 
even when operating under resource-constrained 
environments shows the viability of the 
architecture in practice. Further, it has a modular 
and decentralized characteristic guaranteeing a 
strong degree of scaling over geographically 
dispersed nodes a quality which will make it 
applicable in future implementation of intelligent 
transportation. The next research lines will be 
addressed to the introduction of dynamic resource 
orchestration frameworks, that allows intelligent 
task offloading and dynamic workload balancing 
across heterogeneous edge devices. Furthermore, 
it will look into having integration with Vehicle-to-
Everything (V2X) communication protocols in 
order to achieve cooperative perception and 
coordinated responses between the infrastructure 
as well as the vehicular nodes. In order to make the 
system more robust, procedure will also be 
conducted to test the system under occlusion, poor 
visibility caused by adverse weather as well as 
sensor noise, in the unfortunate circumstances that 
may occur in the real world. 
Energy efficiency and thermals The following are 
the energy efficiency and thermal considerations 
The result is outlined below. 
Although the designed edge-based architecture 
translates to major latency gains, bandwidth 
consumption and scalability, the energy 
consumption of the edge deployment is an aspect 
of consideration especially in real-life applications 
involving embedded models such as the NVIDIA 
Jetson TX2. These products are working on limited 
power ranges, particularly, when they are used in 
outdoor or unmanned roadside conditions. 
Because GPU-accelerated inference takes place in 
real-time, the characteristic issue with raising 
thermal outputs (along with increasing power 
consumption) when sustained processing loads are 
maintained is the situation. More tests in the future 
will involve a profiling of energy consumption by 
the system when placed under a different amount 
of traffic to assess thermal reliability over time. 
Also, the energy performance will be incorporated 

with dynamic workload scheduling, model 
quantization, and sleep-state transitions strategies 
to produce energy effectiveness without 
performance being sacrificed. The long-term 
stability of an edge environment in the system can 
further be enhanced by applying thermal-
conscious task migration and dynamic throttling 
control units. 
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