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 Millimeter-wave (mmWave) communications are anticipated to be 
highly significant to the sixth generation (6G) wireless networks 
because of the ultra-high data rate provided by the mmWave 
communications. Yet, conventional mmWave bands have a high path loss 
and mobility sensitivity, which implies incessant and precise beam 
alignment, which is an immense feat in dynamic settings. In this paper, 
the framework of an energy-efficient beam selection and tracking 
framework in 6G mmWave systems based on deep reinforcement 
learning (DRL) is presented. The beam management process is 
expressed as a Markov Decision Process (MDP) and a Proximal Policy 
Optimization (PPO) agent is deployed to learn an optimal policy of 
controlling the beam in real-time. The proposed DRL agent uses the 
information of both channel states feedback and user mobility to choose 
adaptively the beam directions without the need of carrying out a beam 
search exhaustively or using a fixed codebook. An optimal reward 
function, which is specific to the environment of the robot, achieves a 
tradeoff of signal quality and energy consumption to deliver a confident 
beam alignment alongside minimal overheads. The simulations done 
extensively over a wide range of mobility conditions show that the PPO-
based strategy gets up to 30 percent savings in energy and 95 
percentage of beam alignment accuracy when compared to the existing 
schemes, exhaustive search and location-based beam-forming. All these 
findings confirm that intelligent beam management will be a viable 
method of increasing the energy-efficiency and reliability of 6G 
mmWave communications. The suggested framework provides the main 
reference to mobility-oriented scalable beamforming within the future 
of wireless networks. 
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1. INTRODUCTION 
The realization of the sixth generation (6G) 
wireless networks promises to offer ultra-high 
data transfer rates, giant connectivity, and zero-
latency. Millimeter-wave (mmWave) 
communication has been identified as one of the 
critical components to support such far-reaching 
performance targets as it exploits the wide spectra 
availability in the 30 GHz-300 GHz band. 
Nevertheless, mmWave signals are by nature very 
directional and susceptible to path loss, blockage, 
and fast channel fluctuations caused by the 
mobility of the users and dynamic of the 
environment. Real-time selection and tracking of 
beams is therefore needed in order to support 
reliable and efficient mmWave connectivity [1]. 

Traditional beam management algorithms are 
taxing on computation efforts and use of too much 
signaling that are inappropriate in conditions of 
high mobility where excessive signaling is used. 
Simple types of static beamforming schemes 
cannot adapt to changing channel conditions and 
user dynamics. Such shortcomings explain the 
necessity of smart and adaptive beam forming 
schemes that can learn an environment, and make 
decisions based on contexts.  
In continuation with the theme of this paper, we 
would like to introduce Deep Reinforcement 
Learning (DRL) framework to the beam selection 
and tracking in dynamic 6G mmWave systems. The 
balancing between the beam control and signal 
alignment process is modelled as a Markov 
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Decision Process (MDP) and a Proximal Policy 
Optimization (PPO) agent performs the learning 
task of beam selecting a policy that takes 
maximum signal alignment at minimum cost on 
time and switching. As compared to supervised 
techniques which utilize labeled data, the proposed 
DRL technique keeps up with the variations in the 
channel and mobility settings without a 
comprehensive search. An experiment of 
simulation results reveals that the framework 
shows the capacity to save up to 30 percent energy 
and keep the energy and beam alignment accuracy 
beyond 95 percent as compared to the traditional 
baseline and the learning-based baseline. This 
shows the possibilities of DRL concerning the 
scalability and adaptability problems about the 
beam managements on 6G networks. 
 
2. Related Work 
In the current context of artificial intelligence (AI), 
the adoption of learning-based strategies in 
facilitating beam management in mmWave and 5G 
networks has brought a lot of curiosity. Internet 
beams have also been predicted in supervised 
learning [1], [2] with features like Channel State 
Information (CSI) fingerprints and location of 
users. In addition to making more accurate 
predictions with a static state, the methods have 
the large drawback of needing large labeled 
training sets and flexibility to unseen or dynamic 
network conditions. In order to address these 
shortcomings, scholars have considered the 
potentiality of Reinforcement Learning (RL) 
solution in terms of Q-learning and Deep Q-
Networks (DQN) to optimize adaptive decisions in 
the context of beamforming concepts [3], [4]. 
Though they are quite capable in discrete action 
spaces, these methods are limited by not scaling 
well, or converging, in high-dimensional 
continuous spaces like in the case of real-time 
mmWave systems with massive codebooks. Also, 
Q-learning based agents are subject to overfitting 
and instability in rapidly shifting mobility 
conditions. Actor-critic mechanisms have become 
popular in order to enhance policy robustness. 
Specifically, exotic actors, such as Advantage Actor-
Critic (A2C) and Proximal Policy Optimization 
(PPO) have shown to be more sample-efficient and 
it trains more stably in the dynamic setting [5]. 
Nonetheless, the majority of what has been 
developed fails to consider the problem of joint 
beam selection and tracking on an energy-
constrained basis, and they say nothing about its 
real-time flexibility in a high-mobility scenario in 
6G. 
With the purpose of mitigating these difficulties, 
this paper suggests a DRL-based PPO that would 
acquire an optimal beam control policy utilizing 
energy-efficient and mobility-conscious beam 

alignment. As opposed to the previous approaches, 
our solution allows tracking the beams in real-time 
without cumbersome search to minimize energy 
and still maintain the dependable communication 
associations in 6G mmWave systems. 
 
3. System Model 
We suppose a one cell millimeter-wave (mmWave) 
6G wireless system, in which a base station (BS) 
with a uniform linear antenna array (ULA) sends 
information to a mobile user using a directional 
beamforming approach. The BS also will be 
considered to use only one radio frequency (RF) 
chain and uses a pre-specified discrete 
beamforming codebook, which is represented as B. 
At the codebook in the codebook are associated 
with a particular set of angular directions. 
The system utilizes a time-slotted network 
architecture (via a deployment of the time division 
multiple access sub-network); in the course of 
which, within any given slot, the BS is required to 
choose the most appropriate beam index out of B 
to suit the transient wireless channel conditions 
and the mobility of the users. 
 
3.1 Channel Model 
We use geometric line-of-sight (LOS)-dominant 
mmWave channel model correspondent to a low 
degree of scattering. The link between the mobile 
user and the BS is a narrowband channel. 

h =   αιaΒS(0l)− − −− − − −− − − − −− −

L

l=1

− − − (1) 
where: 

 L denotes the multipath components (which 
is usually small mmWave), 

 where 알 Does alpha denote the complex 

path gain of the l-th path? 
 angl is the angle of departure (AoD) 
 aBS(thl ) is the array response vector of the 

BS at AoDth l. 
It is such a formulation which can reflect the 
angular sparsity of mmWave propagation, 
reflecting that only a small number of strong paths 
are dominant contributors to signal power. The 
array response aBS(0) of a ULA having N antennas 
spaced at a half of the wavelength is generally 
expressed as: 

aBS (0) =  
1

 N
[1, e−jπ sin (0), . . . . . . , e−jπ(N−1) sin (1)]T

−− − − − −− − − −− (2) 
 
3.2 Energy Consumption Model 
In mmWave systems with high frequent 
communication, energy efficiency is a priority 
system design factor owing to the prolonged price 
of RF circuitry and beam control overhead. Total 



 101 Electronics, Communications, and Computing Summit | Oct - Dec 2024 

 

Noemi Emanuela Cazzaniga et al / Deep Reinforcement Learning-Based Beam Selection and Tracking for 
Energy-Efficient mmWave Beamforming in 6G Networks 

 

 
 

energy consumed per decision step is defined by 
us to be: 
E =  Etx  +  Ealign + Eswitch − − − −− − − −− −

− −(3) 
where: 
 Etx  is the transmission energy, the energy of 

which is a function of the beam that is chosen 
and the SNR needed to keep the link reliable, 

 Ealign  includes beam alignment overhead: 

usually this comes in during beam 
training/beam scanning, 

 Eswitch  incorporates the power consumption 
penalty of beam-to-beam switching such as 
control signaling penalties and potential re-
configurable hardware delay penalties. 

Through this model of energy, the beam 
management policy is able to consider the both 
performance and efficiency of communications and 
achieve a balanced optimization on the part 
between throughput and the power consumption. 
This interrelationship between the base station, 
directional beams and user mobility is shown in 
Figure 1. 

 

 
Figure 1. System model for beam selection and tracking in 6G mmWave networks. 

 
The figure consists of a base station (BS) with the 
uniform linear antenna array that supports a 
narrow broad communication with a mobile user. 
The BS chooses one of the beams in a discrete set 
trying to consider the channel changes caused by 
the movement and the energy consumed in 
transmission, alignment, and switching process. 
 
4. Proposed Method 
As the beam selection problem in dynamic 
mmWave 6G environments will require smart 
decisions going forward to increase energy 
efficiency and facilitate adaptation, we model the 
problem as a Markov Decision Process (MDP) and 
solve it with the help of Proximal Policy 
Optimization (PPO), an efficient on-policy deep 
reinforcement learning algorithm. The PPO 
framework helps the learning agent take 
sequential decisions on beamforming to achieve a 
balance between the quality of signals and the 
energy expenditure as well as the changing 
channel. 
 
4.1 MDP Formulation 
The beam selection and tracking process is 
modeled as an MDP defined by the tuple ⟨S,A,R,T,γ⟩, 
where: 

 State (st∈S): The state at time step ttt includes 
relevant environmental features such as: 

 The existing beam index adopted by the BS, 
 Approximated angle of departure (AoD), 
 A user mobility vector (velocity heading), 
 An abridged history of received signal 

strength indicator (RSSI) 
Action (at∈A): The action corresponds to selecting 
a beam index from the beamforming codebook B. 
This decision determines the directional 
transmission strategy in the next time step. 
 Reward (rt): The reward function balances 

received signal strength and energy efficiency, 
and is expressed as: 
rt  =  α . SNRt  −  β . Et − − −− − − −− − −

− − −− − − − −− − − −
− − − (4) 

where α and β are tunable scalar weights, SNRt is 
the signal-to-noise ratio after beam selection, and 
Et is the total energy consumed (as defined in 
Section 3.2). 
 Transition: The environment dynamics follow 

user mobility, causing changes in AoD and 
channel gains over time. These are simulated 
based on mobility models and mmWave 
propagation characteristics. 
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 Discount Factor (γ): A value in the range 
0.95≤γ≤0.99 is used to prioritize long-term 
cumulative rewards over immediate gains, 
supporting stable policy development over 
sequences of decisions. 

 
4.2 PPO Agent Architecture 
The learning agent is created based on the actor-
critic structure that is used in PPO, which is 
composed of two major neural networks: 
• Actor Network: The given network produces a 

probability assignment on the discrete codes of 
the beam in the codebook B. A beam is 
randomly sampled at every-during the training 
phase- time step in order to promote 
exploration. 

• Critic Network: Critic network estimates the 
state-value function of V(st), that is the 
expected cumulative reward of a state with 
state under current policy. It also controls the 
actor network by acting as a guideline to help it 
assess the benefit of the options of actions 
chosen.Objective of Training: PPO is to optimize 
a clipped surrogate objective function that 
constrains policy updates to keep it in a trust 
region and leads to a stable convergence. The 
aim is: 

LPPO (0)  =  Et[min (rt(0)At , Clip (rt(0), 1−∈, 1+
∈)At  )]− − − −− − − (5) 

Wherert(0)  =  
π0( at  st )

π0old  (
 at  st )

 is the probability ratio 

between new and old policies, and At is the 
advantage estimate, computed using Generalized 
Advantage Estimation (GAE) to reduce variance 
while preserving bias control. 
The formulation allows the agent to discover a 
beam choice policy that is most reliable and least 
energetically costly over a communication channel, 
which in addition, becomes responsive to the 
dynamics of mobility as well as environmental 
uncertainty, in a real-time manner. 
 
5. Simulation and Results 
In order to assess the performance of the 
suggested DRL-based beam control scheme, we use 
a dynamic mmWave 6G scenario with mobility and 
practical channel circumstances. The simulation 
compares the proposed Proximal Policy 
Optimization (PPO) agent with the traditional and 
learning based bench mark using measurements in 
beam alignments and energy efficiency. 
 
5.1 Simulation Setup 
The most important simulation parameters have 
been summarized as below: 
• Carrier Frequency: 28 GHz which is a 

common mmWave 5G/6G operation band 
• Antenna Placement: Uniform Linear Array 

(ULA) having 64 elements on the base station 

• User Mobility: The speed of users is variable 
in the order of 5-20m/s 

• Beamforming Codebook: discrete codebook 
with 32 directional beams 

• Bandwidth of the Channel: 100 MHz 
• 2 Baseline Comparisons: 
• Exhaustive Beam Search:This searches 

through all beam directions within in the 
codebook 

• Location-Based Beamforming: The beams are 
chosen according to user location 
determination 

• Deep Q-Network (DQN): Q-learning-trained 
deep reinforcement learning agent that learns 
beam selection 

All models are compared and tested across a 
number of simulation episodes to make the test 
statistically consistent. mmWave propagation 
regime combines line-of-sight (LOS) dominant 
channels, which vary in angle because of user 
movement. 
 
5.2 Performance Metrics 
The efficiency of the suggested procedure is 
assessed by the following indicators: 
• Beam Alignment Accuracy (%) -Ratio of time 

that the chosen beam is aligned with the ideal 
beam direction with respect to instantaneous 
channel conditions. 

• Energy Consumption (Joules): Accumulated 
energy of the system with cost of 
transmission and alignment and switching of 
beam costs, as already defined in Section 3.2. 

• Beam Switching Rate (per second): The rate 
of switches between beams, this shows the 
stability of a system as well as its 
responsiveness. 

• Average Signal-to-Noise Ratio (SNR in dB): An 
average quality of the links during the 
simulation period. 

 
5.3 Results Summary 
According to the results of the simulation, it is 
possible to note that the proposed PPO agent 
shows higher performance in all essential metrics. 
As demonstrated in Figure 2, the strategy based on 
the PPO reaches the beam alignment accuracy of 
95.3 percent, which is much higher than the 
average police part of DQN (85.7 percent) and 
location-based beamforming (85.1 percent) and 
proves the effectiveness of this strategy in 
overcoming the dynamics of users. 
Regarding the level of system-level energy 
performance, the figure 3 illustrates that PPO cuts 
the total energy loss by nearly 30 percent as 
compared to the exhaustive search as a result of 
smart beam reuse and decreased alignment cost. 
Compared with PPO as shown in Figure 4 PPO has 
lower beam switching rate showing a smoother 
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stable tracking behaviour with limited 
reconfiguration under high-mobility conditions. 
His last figure (Figure 5) shows that PPO achieves a 
high and stable average SNR, which is as good as it 
is in the case of exhaustive search, but with less use 
of energy and control resources. 

All these findings confirm that the suggested DRL 
framework based on PPO can perform real-time, 
robust, and energy-aware beam management and 
provides a scalable tool to enable the intelligent 
beam control in 6G mmWave systems. 

 

 
Figure 2. Beam Alignment Accuracy (%) – PPO achieves high accuracy near optimal (95.3%) with 

minimal misalignment. 
Figure 3. Energy Consumption (Joules) – PPO reduces total energy usage by ~30% compared to 

exhaustive search. 
Figure 4. Beam Switching Rate (per second) – PPO demonstrates smoother beam control with 

significantly fewer switches. 
Figure 5. Average SNR (dB) – PPO maintains strong link quality, comparable to exhaustive methods 

 
6. CONCLUSION AND FUTURE WORK 
It has proposed a Deep Reinforcement Learning 
(DRL) paradigm of Proximal Policy Optimization 
(PPO) to carry out adaptive beam selection and 
tracking in energy-constrained 6G millimeter-wave 
(mmWave) networks. The proposed approach 
allows a learning agent to choose the best 
beamforming directions in real-time due to 
environmental feedback, channel conditions and 
mobility patterns by modeling the problem to a 
Markov Decision Process (MDP). The agent 
succeeds in a tradeoff between the accuracy of 
beam alignment and energy requirements by 
outperforming conventional baselines like DQN, 
location-based algorithms, and beam search, 
exhaustive search. 
Auxiliary simulations illustrate that the PPO-based 
policy can save up to 30% of the energy 
consumption and achieve the alignment accuracy 
of the beam within the range of 95% and higher, 
and it can be a potentially powerful real-time 

policy to be implemented in smart 6G access 
networks. The integration of beam selection and 
energy-aware decision-making is part of the 
reason that the system-level performance will be 
improved with user mobility and channel 
variation. 
As a line of further research, it is hoped that the 
present investigation can be extended in a number 
of ways: 
• Multi-user Beam Management: Extensions to 

cover simultaneous management of multiple 
users having conflicting spatial requirements 
and a sharing RF resource. 

• Joint Beamforming Power Control: Combining 
the beam direction control decisions with 
adaptive transmit power control with aims 
towards end-to-end energy-performance 
optimisation. 

• Reconfigurable Intelligent Surfaces (RIS): 
These reconfigurable intelligent surfaces 
introduce RIS-aided propagation into the 
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scenario to increase signal steering and 
blockage’s ability. 

• Hardware-Aware Learning: Emerging 
lightweight and quantization-invariant 
learning models that can be deployed in an 
energy efficient edge hardware with low 
latency inference requirements. 

These guidelines are meant to improve the 
scalability, robustness, and deployability of the 
intelligent beamforming systems in the next-
generation of mmWave-based 6G networks. 
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