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With a continuing evolution of smart home ecosystems, the
enhancement of the artificial intelligence (AI) concept has recently
become a key in terms of providing intelligent automation, adaptive
control, and personal experiences of users. Such Al-based services
largely depend on data about the users, detect patterns, estimate
requirements, and make the system performance. But, the traditional
approach of putting this information on cloud servers causes severe
problems of privacy of the users and ownerships of the data, latency,
and scale of the system. To overcome such limitations, the proposed
paper presents a new privacy-aware Al model to utilize both Federated
Learning (FL) and Meta-Learning (ML) to provide personal, efficient,
and secure Al services in smart homes. Federated Learning That is used
to train a model over multiple devices in collaboration, without
revealing the original data, thus securing better privacy and adherence
to data protection standards. Nevertheless, a classic FL is aimed at
overcoming non-IID distribution of data and slow convergence to
heterogeneous environments. So as to resolve these problems, in our
framework, we are including a model-agnostic meta-learning
framework that provides each device in the smart home with the
capability of adapting rapidly to its local environment with minimal
data samples. In this federated meta-learning approach, smart devices
are given the power to customize models, but they also enjoy global,
shared knowledge base. The architecture proposed incorporates light
on device computation and secure aggregation protocols and
differential privacy to guarantee sophistication against inference
attacks. Our framework is effective, which is confirmed by test
simulations and real experiments on large datasets, including CASAS
and synthetic smart home activity log. Evaluation outcomes indicate
that our method of evaluation is disproportionately high compared to
the traditional FL and centralized model in terms of model accuracy,
adaptation speed, communication efficiency and privacy protection. The
study forms a solid basis of scalable, personalised and trustable Al in
intelligent homes, which can provide insightful information on how
federated meta-learning systems can be deployed in various
environments, especially those that are privacy-sensitive.

1. INTRODUCTION

potential towards streamlining home activities and

The development of the smart home technologies
has transformed the interactions of individuals
with their living space. Modern smart homes are
getting smarter through Artificial Intelligence (Al)
to be able to provide context-aware automation,
predictive behavior, and an individual experience
of the smart environment, inclusive of the security
systems and energy management, voices-
controlled appliances, and intelligent lighting. As
intelligent devices gather information about
different sensors, the behavior of users, and the
environment, the need in data-driven intelligence
is increasing. These streams of data have a great
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greater user satisfaction. They however present
serious issues over the privacy of users, their data
security and also scalability of systems.

Conventionally, the Al applications used in smart
homes are built based on centralized learning
paradigms whereby data acquired by various
devices are channeled to a central server to train
and make inferences. As great as the global models
with this implementation are, it also risks the
privacy of the user, and particularly as occasionally
sensitive data, like voice commands, movement
patterns, and energy consumption are sent
elsewhere beyond the local fashion. Moreover, the
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fields of regulation, including the General Data
Protection Regulation (GDPR) and the California
Consumer Privacy Act (CCPA), severely restrict
data sharing and processing, making privacy-
preserving Al capacities substantial.

To reduce these trade-offs, Federated Learning
(FL) has become an alternative decentralized
learning framework that makes it possible to train
a model on the distributed devices without need of
sending the raw data to a central point. Each
device does its local training and only updates the

model, which is further merged to enhance a
common global model. Nonetheless, there are a
number of issues with FL in real environments
deployments of the smart home. These consist of
the non-random and homogeneous (non-IID) data
across houses, differences in features between
devices, inefficiencies in communication and
absence of model customization. The FL models
tend to be slow in converging and they do not
adapt to a particular user environment limiting
their applicability.

Federated Meta-
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Figure 1. Centralized Al vs. Federated and Meta-Learning in Smart Homes

In order to mitigate these drawbacks, we introduce
a more sophisticated architecture to be applied to
the FL and use Meta-Learning (ML) in the process
to establish a Federated Meta-Learning
framework. Learning to learn or meta-learning
enables the models to change to new tasks quickly
with a limited number of examples. This capability,
in combination with federated training, allows the
proposed approach to empowers smart home
devices to personalize Al services in an effective
way without interfering with the data privacy.
Each device trains a model initialization that
enables immediate adaptation to its local
environment and hence requires little local data or
retraining.

The current paper elaborates the fully-fledged
architecture of  federated meta-learning
framework to apply to smart homes ecosystems. It
has  system-level pieces of edge-device
orchestration, differential privacy enforcement,
secure  aggregation, and efficient meta-
optimization. We assess the suggested method
with the help of benchmark smart home data and
show that it is better than standard FL and
centralized solutions in terms of personalization
speed, model accuracy, data privacy, and
communication efficiency.

The rest of the paper is organized as follows:
Section 2 presents related work on federated
learning, meta-learning, as well as smart home Al
Section 3 provides system architecture. In section
4, the methodology together with the design of the
algorithm are explained. The section 5 contains
experimental adjustments and assessment
outcomes. Future directions and open challenges
are mentioned in Section 6, and conclusions of the
study can be found in Section 7.

2. RELATED WORK

The importance of Al technologies applied in the
smart house environment stimulation provokes an
intense study of centralized and decentralized
learning systems. In this section, currently existing
literature will be reviewed in four main directions,
that is, centralized Al in Smart Homes, federated
learning (FL), meta-learning (ML), and the recent
efforts to integrate FL with ML. A comparative
analysis was done and summarized in Table 1.

2.1 Smart Homes Centralized Al

Initial intelligence in smart homes was dominated
by the use of centralized models of Al whereby the
user information of various households is reduced
into a central server to train the Al models in it and
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construct inference. The presence of a variety of
data frequently made these models very accurate
and possessing great personalization options.
Nonetheless, such a thing gives rise to great risks
to the privacy of data, and contradicts data
sovereignty principles. Ethically and legally, the
processing and storage of data centrally have
emerged as an issue as more regulations are being
added, including the GDPR and the CCPA.

2.2 Federated Learning

McMahan et al. [1] propose Federated Learning,
which is a privacy-preserving option that allows
the device to locally train their model without
providing raw data. FL frameworks such as FedAvg
combine model updates on client devices to form a
common shared model. Even though this method
counteracts the problem of privacy, it has related
drawbacks of non-IID data distributions, slow
convergence, and low personalization in
heterogeneous smart homes. Such constraints limit
the ability of FL in the settings in which users
display very different behavior patterns and
sensor configurations.

2.3 Meta-Learning

Under the rubric of Meta-Learning, or learning to
learn, as suggested by Finn et al. [2], models learn
to learn at a fast rate even after few data samples

are used to adapt new tasks. This comes in very
handy where the data is rare or dynamic. On the
one hand, meta-learning has the advantage of
being highly customizable in a short amount of
time, but on the other, it requires the existence of a
centralized meta-dataset and does not include
privacy-respecting mechanisms in its core
functionality, which are factors that do not allow it
to be applied directly to smart home settings
without the introduction of significant changes.

2.4 Federated meta-learning

Studies have recently tried to merge the
advantages of FL and ML. A FedMeta [3] by Chen et
al. is one example that provides federated systems
with meta-learning principles allowing quick
adaptation in the context of his or her clients.
Additional research is devoted to federated edge
Al and smart home ecosystems [4; Yang et al,
2022]. In this research, the possibilities of the
edge-based  collaborative intelligence  are
considered. Nevertheless, these contributions do
not show a special focus on heterogeneity of smart
homes, such as variabilities of sensor varieties,
user preferences, and time limits in real-time
control. Also, the majority of works fail to take the
complete range of privacy threats in the multi-
agent setting into account.

Table 1. Comparative Review of Related Approaches

Research Area

Summary

Limitations

Centralized Al in Smart Homes
invasive

Personalized but privacy-

Data centralization risks and
regulatory non-compliance

Federated Learning Preserves

privacy  via
decentralized training

Lacks personalization,
inefficient in non-IID settings

Meta-Learning Enables

fast
with minimal data

adaptation | Lacks privacy guarantees and
real-time feasibility in edge

environments

FL + Meta-Learning (Recent | Promising

synergy

for | Limited adaptation to smart

Works) personalization and privacy | homes; inadequate handling of
system heterogeneity
The state-of-the-art is further advanced by  with. It is made up of four main elements: smart

developing a federated meta-learning framework
specializing in the peculiarities of smart home
ecosystems and proving its effectiveness. Our
method maximizes in both personalization and
privacy coupled with keeping a check on the
computational and communication efficiency of
heterogeneous private settings.

3. System Architecture

The advanced Federated meta-Learning system
aims to facilitate client-individualized, confidential
Al services in sensible habitats. The architecture
makes going decentralized and adapting fast as
well as considerations of privacy, heterogeneity of
systems and computational constraints are dealt

home nodes, edge-coordinated federated meta-
learning loop, secure aggregation infrastructure as
well as privacy enhancing security layer. Figure 1
presents an overview of the constituted system
architecture diagram.

3.1 Overview of System Diagram

This architecture involves several smart agent
homes (individual homes with IoT equipment),
which communicate with edge gateways, and with
each other, in coordination with a federated
server, running under another trusted edge fog or
cloud framework. Orchestration of meta-learning
is done by the central federated server that
distributes initial model parameters and gathers
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meta-updates. Each smart home node uses its
environment and builds a local model and does not
revert to the server raw data but only preferences
in form of encoded model changes. Meta-learning

Cloud/Fog-based

loop supports rapid adaption, because the server
has learned initialization parameters that
generalize over a wide variety of homes.

Federated Meta-Lear ning

Server

Mdata aggregation ',"

R Model parameter exchange

’ Upta-initialization

= ," =
— —
Edge Edge
Gateway Gateway
QO QO |..... QO QO
a5 a5 a5 o5
Smart Home Smart Home Smart Home Smart Home

Figure 2. System Architecture of Federated Meta-Learning Framework for Smart Home Ecosystems

3.2 SMART HOME Node

Any smart home node is like an independent
learning entity with a network of Internet-of-
things devices like smart lamps, heating controls,
CCTVs, motion sensors, and smart assistants that
respond to voice commands. The devices gather
multimodal data always depicting the behavior of
users, conditions of their environments, and the
contexts of interaction in the house. In order to
keep communication overhead to a minimum and
to keep users privacy preserved, raw sensor data is
preprocessed locally, i.e. normalized, filtered, and
converted into feature vectors in structural
formats that can be fed to the machine learning
algorithms. This processed information is then

used to teach and train a lightweight model of Al
with just some steps of optimization that can
enable the device to tune a common global
initialization to unique local circumstances.
Instead of sending the raw data, the updates of
only the model are sent to the central federated
server by each node e.g. the gradient vectors or the
optimized weight parameters. This distributed
learning strategy guarantees that no individual
data would be sent outside the home setting, but at
the same time, allowing the international model to
benefit with the opening of collaborative training.
Finally, the system enables Al models to learn the
individual user behavior and preferences privately
and efficiently in terms of communication.
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Figure 3. Internal Architecture of a Smart Home Node for Federated Meta-Learning
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3.3 Federated Meta-Learning Loop

The proposed system contains a Federated Meta-
Learning (FedMeta) loop to capitalize on the best
of both worlds: the speed of Personalization of
Federated Learning (Federa- ted Learning (FL))
and the adaptability of Model-Agnostic Meta-
Learning (MAML) to put from scratch privacy-
preserving Personalization of smart home settings.
The step entails the server starting with a global
meta-learner model that has parameters 6, learned
in the past federated training rounds. The
individual clients (e.g. smart home device) in turn
then do local adaptation via inner-loop
optimization, on their own data, refining the 6 into
the more specific task model 0 i. This adaptation
adopts the philosophy of MAML, which enables the

model to learn to learn using few local data. Within
the outer loop, the server sums up the gradient
updates or loss differentials VL_T(6;) that it
receives on clients to re-estimate the global meta-
model, devoid of raw data. This repetition of the
process of communication takes part in various
rounds of communication until a strong and
generalizable end is reached, or until the model
converges. A meta-model once trained can be
personalized in short time by new clients with only
a few local gradient steps which allows real-time
inference and responsiveness without retraining
the entire model. This is a scalable and efficient
architecture that provides high levels of privacy to
data using intelligent, personalized services.
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Figure 4. Federated Meta-Learning Loop for Pers

3.4 Privacy and Security Layer

Since data recorded in the smart home setup,
including voice commands and behavioral patterns
is quite sensitive, implementation of a complete
package of privacy-preserving tools is proposed to
ensure user data is not compromised at any point
of data lifecycle in the proposed architecture.
Differential Privacy (DP) is utilized to local weeks
of updates by including well-tuned noise before
sending, and can provide formal re-identification
security guarantees, and reduce the threat of
signature of data leakage through shared
gradients. Further, to achieve additional security,
Secure  Aggregation  Protocols such as
homomorphic encryption or secure multiparty
computation allow any contribution on the

Electronics, Communications, and Computing Summit | Jan -

onalized and Privacy-Preserving Smart Home Al

federated server model parameters, but do not
reveal the personal contribution of any device.
Locally, a more extreme version of Differential
Privacy is used, the Local Differential Privacy
(LDP), which anonymizes both especially sensitive
input Prior to any local computation, the input
may, e.g., be audio or video streams. This is
particularly important in the case of common
households where there can be various users
including children that touch smart devices. The
combination of these layers results in a strong
privacy solution that can help guarantee end-to-
end protection of information and make the
system GDPR/CCPA compliant and increase
consumer trust in the smart home service
promoted with AL
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Table 2. Privacy-Preserving Techniques across the Federated Meta-Learning Pipeline

Privacy Technique Applied Stage Purpose Benefits
Local Differential | At Data Source (IoT | Obfuscate raw inputs | Protects sensitive user
Privacy (LDP) Device) (e.g., audio, video) before | interactions before
processing computation
Differential Privacy | On  Local Model | Add calibrated noise to | Prevents leakage of
(DP) Updates gradient vectors individual data through
shared models
Secure Aggregation Server-Side Aggregate encrypted | Prevents server from
(Federated Server) model wupdates from | accessing individual
multiple clients contributions
Homomorphic During Enable computations on | Ensures model updates
Encryption Communication encrypted data remain encrypted in
transit
Multiparty Aggregation Phase Distribute computation | Prevents  single-point
Computation (MPC) among non-colluding | data exposure during
parties aggregation

4. METHODOLOGY
4.1 Formulation of the problem
Specifically in the case of personalized Al enabling
smart home, every house has its own peculiarities
of the environment, user habits, and device
settings. Thus the learning task in one of the smart
home settings could be modelled as separate
tasksT4,T5, ..., Ty, where N is the number of
homes in the federated learning environment.
There is a local dataset D;associated with each task
T;and the datasets are not shared outside their
own node.
Our federated meta-learning framework aims to
ensure that each smart home can fast-track the
process of personalizing the model by training a
few optimization steps with only a small number
of local data by learning a global model
initialization 6. This idea corresponds to the
principles of Model-Agnostic Meta-Learning
(MAML), that is, by optimising the initial
parameters (usually called wrapper parameters) it
is possible to efficiently fine-tune the initial
parameters to new tasks, thus acting as a meta-
learner.
The client does inner-loop optimization to
optimize the global model@using its local loss
functionL(T;) and learning rate L(T). This gets us
the personalized model:

0; =0 —aVydr,(0)
This step is actually one step of the gradient
descent algorithm, but several have to be done
based on the capacity of the device and on the
requirements of convergence. After all
participating clients have conducted their local
adaptation, the meta-learner (central server) can
conduct an outer-loop update that may be used to
optimize their shared initialization 2. The update
combines the gradients of the loss at the adjusted
parameters 6;SHIFT NYULE 2009 acquis, typed

N
0 —0-5) V,0,(6)
i=1

This bi level optimisation loop then revolves
through a number of rounds. The inner loop will
allow quick personalization per client using local
data but the outer loop will make sure that the
global model evolves into progressively being
more generalizable over all tasks. The beauty of
this method is that it identifies task invariant
knowledge to produce fast learning rates in unseen
conditions, and thus would be very applicative in
wide-ranging and various smart-home ecosystems
that are dynamic.

4.2 Algorithms
The fundament of the proposed federated meta-
learning system construction is made up of the
principles of Model-Agnostic Meta-Learning
(MAML) gradient-based meta-learning algorithm
which seeks an optimal model initialization that is
able to rapidly adapt to new tasks with a small
number of gradient steps. In our scenario, every
task represents a different smart home with its
own local data distribution and therefore MAML is
best use case to consider the problem of
personalization in heterogeneous smart homes.

The algorithm is bi-level optimization, in which

every node (client) of the smart home does a local

inner-loop update of adjusting the global model to
its local context, and the central server does an
outer-loop update optimizing the shared model
initialization across tasks.

The next steps are

communication round:

1. Server side Model Initialization: The clients
computer determines the models
environment (global parameters) of model 6
to be used and sends the model parameters to
all the clients.

carried out at every
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2. Inner-Loop Fine-Tuning (Client Side):
Individual clients are given the same global
model and optimized it with only a local
gradient updates on local data and produce
task specific model8;. This will be a step to
personalize the model by applying an
adaption procedure in MAML:

6; =0 —aVyly (6)

3. Server Side Outer-Loop Meta-Update:
Customers calculate the gradients of their
fine-tuned models, and transmit them back to
the server. These updates are then averaged
out by the server, through a federated
averaging approach (FedAvg), and the meta-
update is carried out:

N
0. — 0 VyBr,0)
i=1

This makes the overall initialisation progressively
cost-effective to future change.

The federated learning frameworks, which are
TensorFlow Federated (TFF) and PySyft
(https://pysyft.org), are used to implement the
algorithm to encompass data privacy and
scalability, characterized by the support of secure
aggregation, differential privacy, and hardware
heterogeneity. These frameworks facilitate an easy
simulation and deployment of federated learning
pipelines with a potential for inclusion of
differential privacy mechanisms and protocols to
secure communications in the training pipeline.

In general, the use of this hybrid strategy allows to
merge the flexibility of MAML adaptation and
effective communication of FedAvg into a highly
personalized, privacy-focused, and scaleable Al
training system ideally suited to smart home
environments.

5. Experimental Setup

5.1 Datasets

As it is difficult to thoroughly train and test the
suggested privacy-preserving federated meta-
learning framework without such hybrid dataset
approach, real-world, synthetic, and privacy-

sensitive data sources were combined contributing
to the representation of various modalities existing
in the smart home environment. The key aspect of
this fashion was the deployment of CASAS Smart
Home Dataset, which is a well-known benchmark
that offers the rich and annotated time-series data
acquired in the real residential environment. It
contains the ambient sensor data, including the
aspect of motion detection, use of doors, and
appliances, which provide valuable insights into
typical human behavior patterns and creates the
possibility of modeling life-like activity recognition
tasks. In order to increase the variability of
training situations as well as their coverage, we
created a Virtual Smart Home Simulator that can
create synthetic datasets of how real-time sensor
values may change due to the occupancy pattern,
the changes in the illumination, the activity of the
HVAC systems, and user-initiated events and put it
in action in unknown temporal and contextual
conditions. This synthetic data had the additional
benefits of using it as pretraining data and
augmenting edge devices where the real-world
data is not readily available.

The framework also included privacy-sensitive
datasets based on real deployments, such as
encrypted log of voice commands, motion
detection data not requiring cameras, and
temperature measurements in the surrounding
area. Different types of such data were processed
with the help of the differential privacy method in
order to guarantee the confidentiality of users in
the process of federated training. Through
integrating privacy-sensitive analysis into the data
preprocessing and model aggregation phases, the
framework was strictly compliant with the data
privacy laws, including GDPR and CCPA, even in
multi-user and context-sensitive applications. This
privacy-sensitive and holistic data approach does
not only enhance the model to better generalize
among all clients (both heterogeneous in nature)
but it also proves the capacity of both the model to
make precise and personalized inferences without
risking the trust and security of the users.

Table 3. Overview of Datasets Used for Federated Meta-Learning Evaluation

Dataset Source Modality/Features Purpose Privacy

Type Handling
CASAS Real-world Motion  sensors, door | Activity Anonymized;
Smart (Washington usage, appliance activity recognition, time- | public benchmark
Home State University) series modeling
Dataset
Synthetic Custom Virtual | Simulated occupancy, | Data augmentation, | No real user data;
Smart Smart Home | lighting, HVAC behavior, | model pertaining used for training
Home Data | Simulator contextual triggers robustness
Privacy- Real smart home | Voice commands, camera- | Evaluate privacy- | Encrypted +
Sensitive deployments free motion events, | preserving learning | Differential
Home Data temperature logs performance Privacy applied
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48




C.C. Kingdon et al / Federated Meta-Learning for Privacy-Preserving Al in Smart Home Ecosystems

5.2 Evaluation Metrics

In order to thoroughly gauge the suggested
federated meta-learning system inside the premise
of privacy-sensitive smart homes, a
multidimensional group of evaluation criteria was
used to study both the performance of the models
and the system-scale limitations. The main
functional evaluation measure was accuracy,
which means the classification accuracy in the
device on real tasks, including activity recognition,
anomaly detection, and device usage prediction.
This metric is measured once the local
convergence is reached and represents the
possibility of the modeling to become applicable to
the sensor data and user behaviors in reality. The
Personalization Time which was used to measure
the time it took the global meta-model to
customize to a new client or household by utilizing
minimal local updates was also important. This
indicator is essential in evaluating whether the
meta-learning framework can be responsive to
user needs, since easily adaptable systems and
satisfied users are the key factors defining the
quality of smart home operation in variable
environments.

At the same time, Privacy Leakage Risk has been
assessed to ascertain the ability of the system to
withstand inference attacks, specifically,
membership inference attacks used to detect the
likelihood of a given user having contributed their
information to the training procedure. The
reduced success rate in such attacks would be a
sign of a higher privacy protection and this proves
that the use of differential privacy and secure
aggregation mechanisms incorporated in the
system would be effective. At last, the metric
Communication Cost was evaluated as the total
amount of data transferred between the edge
nodes and the central server within each of the
training rounds. The metric has a particular
importance to the smart home environment since
bandwidth and energy limitations require low data
transfer. It takes into consideration the scale and
rate of upgrade of models and the client base that
is involved in the process. Taken altogether, these
measures will make a holistic review of the system
accuracy, flexibility, privacy robustness, and
efficiency, and it can be regarded that the
framework is not only technically but also
practically viable to be used in decentralized and
privacy-conscious smart home environments.

Table 4. Evaluation Metrics for Federated Meta-Learning in Smart Homes

household’s data

Metric Definition Purpose/Importance
Accuracy Percentage of correct | Measures model generalization and
predictions on local smart home | inference quality on real-world
tasks data
Personalization Time | Time taken to adapt the meta- | Evaluates responsiveness and

learned global model to a new

adaptability of the model to user-
specific behavior

Privacy Leakage Risk
inference or model
attacks

Success rate of membership
inversion

Indicates the strength of privacy
mechanisms like DP, LDP, and
secure aggregation

Communication Cost

Total size of model updates
exchanged per training round

Assesses bandwidth efficiency and
scalability in resource-constrained
environments

6. RESULTS AND DISCUSSION

As revealed by Table 2, their experimental results
tend to prove the relative success of three learning
paradigms, including Centralized CNN, traditional
Federated Learning (FedAvg), and the proposed
Federated Meta-Learning (FedMeta) technique,
introduced with the utilization of the differential
privacy mechanisms. Although a centralized CNN
has the highest level of accuracy, i.e. 93.2%, has
high privacy leakage risk and communication

overhead and thus cannot be used in privacy-
sensitive and bandwidth-limited smart home
contexts. FedAvg, on the contrary, was less risky in
terms of privacy but with a much lower
communication cost, having an accuracy of 88.6%
with a moderate adaptation time, which took 10
rounds. Nevertheless, it was also deficient in
providing both quick personalization and in the
need of long federated updates to adjust to new
users or machines successfully.
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Figure 5. Comparative Evaluation of Centralized, Federated, and Federated Meta-Learning Models in
Smart Home Environments

The FedMeta framework generated proved to
perform fine in all major measures. It achieved an
accuracy of 91.9%, and this value is slightly below
that of the centralized baseline, but significantly
greater than that of FedAvg. It is important to note
that, personalization time was also significantly
decreased to 2 rounds, which means that the
system could quickly adjust to new environment
or users with minimal information and training.
Moreover, the risk of the privacy leakage was
much smaller because of the theoretically used
differential privacy techniques and due to the

decoupling of raw data with model updates. The
optimization with the help of meta-learning also
minimized communication cost because it
decreased the number of update rounds and data
transfers. On the whole, the suggested
methodology shows that meta-learning in
combination with privacy-enhancing measures can
be used to extend user-adaptive, robust, and highly
efficient models that can be applied in the smart
home ecosystem to achieve a trade-off between
personalization accuracy, privacy preservation,
and the communication efficiency of the system.

Table 5. Comparative Performance of Centralized, Federated, and Federated Meta-Learning Models

Metric Centralized CNN Federated Federated Meta-
Learning Learning
(FedAvg) (FedMeta)
Accuracy (%) 93.2 88.6 91.9
Personalization Time (Rounds) | 0 10 2
Privacy Leakage Risk High Moderate Low
Communication Cost (Units) High Medium Low

7. CONCLUSION

The project proposes an innovative and efficient
privacy-sensitive Al  algorithm  which s
appropriate in smart home ecosystems through
the synergetic combination of Federated Learning
(FL) and Meta-Learning concepts. The FedMeta
architecture design resolves two critical challenges
of model adaptation to the specifics of individuals,
privacy, and efficiency on distributed smart
environments. The framework provides a
reasonable trade-off between performance and
confidentiality because it can personalize devices
within seconds of communication overhead and is
resistant to privacy attacks. The use of the
differential privacy methods also increases
credibility, as the sensitive information about the
users will be secure in the process of training. The
empirical analysis proves the FedMeta to be more
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effective than standard FL approaches when it
comes to adaptation rate, privacy protection, and
precision, which confirms the precondition of its
real-world implementation. Move forward Future
research on this framework will be extended to the
live smart home testbeds and investigate real-time
user interaction and incorporate the latest privacy-
preserving technologies like homomorphic
encryption, secure multiparty computation or
utility and blockchain-based trust framework to
strengthen the end-to-end system safety and user
data sovereignty.
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