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 With a continuing evolution of smart home ecosystems, the 
enhancement of the artificial intelligence (AI) concept has recently 
become a key in terms of providing intelligent automation, adaptive 
control, and personal experiences of users. Such AI-based services 
largely depend on data about the users, detect patterns, estimate 
requirements, and make the system performance. But, the traditional 
approach of putting this information on cloud servers causes severe 
problems of privacy of the users and ownerships of the data, latency, 
and scale of the system. To overcome such limitations, the proposed 
paper presents a new privacy-aware AI model to utilize both Federated 
Learning (FL) and Meta-Learning (ML) to provide personal, efficient, 
and secure AI services in smart homes. Federated Learning That is used 
to train a model over multiple devices in collaboration, without 
revealing the original data, thus securing better privacy and adherence 
to data protection standards. Nevertheless, a classic FL is aimed at 
overcoming non-IID distribution of data and slow convergence to 
heterogeneous environments. So as to resolve these problems, in our 
framework, we are including a model-agnostic meta-learning 
framework that provides each device in the smart home with the 
capability of adapting rapidly to its local environment with minimal 
data samples. In this federated meta-learning approach, smart devices 
are given the power to customize models, but they also enjoy global, 
shared knowledge base. The architecture proposed incorporates light 
on device computation and secure aggregation protocols and 
differential privacy to guarantee sophistication against inference 
attacks. Our framework is effective, which is confirmed by test 
simulations and real experiments on large datasets, including CASAS 
and synthetic smart home activity log. Evaluation outcomes indicate 
that our method of evaluation is disproportionately high compared to 
the traditional FL and centralized model in terms of model accuracy, 
adaptation speed, communication efficiency and privacy protection. The 
study forms a solid basis of scalable, personalised and trustable AI in 
intelligent homes, which can provide insightful information on how 
federated meta-learning systems can be deployed in various 
environments, especially those that are privacy-sensitive. 
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1. INTRODUCTION 
The development of the smart home technologies 
has transformed the interactions of individuals 
with their living space. Modern smart homes are 
getting smarter through Artificial Intelligence (AI) 
to be able to provide context-aware automation, 
predictive behavior, and an individual experience 
of the smart environment, inclusive of the security 
systems and energy management, voices-
controlled appliances, and intelligent lighting. As 
intelligent devices gather information about 
different sensors, the behavior of users, and the 
environment, the need in data-driven intelligence 
is increasing. These streams of data have a great 

potential towards streamlining home activities and 
greater user satisfaction. They however present 
serious issues over the privacy of users, their data 
security and also scalability of systems. 
Conventionally, the AI applications used in smart 
homes are built based on centralized learning 
paradigms whereby data acquired by various 
devices are channeled to a central server to train 
and make inferences. As great as the global models 
with this implementation are, it also risks the 
privacy of the user, and particularly as occasionally 
sensitive data, like voice commands, movement 
patterns, and energy consumption are sent 
elsewhere beyond the local fashion. Moreover, the 
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fields of regulation, including the General Data 
Protection Regulation (GDPR) and the California 
Consumer Privacy Act (CCPA), severely restrict 
data sharing and processing, making privacy-
preserving AI capacities substantial. 
To reduce these trade-offs, Federated Learning 
(FL) has become an alternative decentralized 
learning framework that makes it possible to train 
a model on the distributed devices without need of 
sending the raw data to a central point. Each 
device does its local training and only updates the 

model, which is further merged to enhance a 
common global model. Nonetheless, there are a 
number of issues with FL in real environments 
deployments of the smart home. These consist of 
the non-random and homogeneous (non-IID) data 
across houses, differences in features between 
devices, inefficiencies in communication and 
absence of model customization. The FL models 
tend to be slow in converging and they do not 
adapt to a particular user environment limiting 
their applicability. 

 

 
Figure 1. Centralized AI vs. Federated and Meta-Learning in Smart Homes 

 
In order to mitigate these drawbacks, we introduce 
a more sophisticated architecture to be applied to 
the FL and use Meta-Learning (ML) in the process 
to establish a Federated Meta-Learning 
framework. Learning to learn or meta-learning 
enables the models to change to new tasks quickly 
with a limited number of examples. This capability, 
in combination with federated training, allows the 
proposed approach to empowers smart home 
devices to personalize AI services in an effective 
way without interfering with the data privacy. 
Each device trains a model initialization that 
enables immediate adaptation to its local 
environment and hence requires little local data or 
retraining. 
The current paper elaborates the fully-fledged 
architecture of federated meta-learning 
framework to apply to smart homes ecosystems. It 
has system-level pieces of edge-device 
orchestration, differential privacy enforcement, 
secure aggregation, and efficient meta-
optimization. We assess the suggested method 
with the help of benchmark smart home data and 
show that it is better than standard FL and  
centralized solutions in terms of personalization 
speed, model accuracy, data privacy, and 
communication efficiency. 

The rest of the paper is organized as follows: 
Section 2 presents related work on federated 
learning, meta-learning, as well as smart home AI. 
Section 3 provides system architecture. In section 
4, the methodology together with the design of the 
algorithm are explained. The section 5 contains 
experimental adjustments and assessment 
outcomes. Future directions and open challenges 
are mentioned in Section 6, and conclusions of the 
study can be found in Section 7. 
 
2. RELATED WORK 
The importance of AI technologies applied in the 
smart house environment stimulation provokes an 
intense study of centralized and decentralized 
learning systems. In this section, currently existing 
literature will be reviewed in four main directions, 
that is, centralized AI in Smart Homes, federated 
learning (FL), meta-learning (ML), and the recent 
efforts to integrate FL with ML. A comparative 
analysis was done and summarized in Table 1. 
 
2.1 Smart Homes Centralized AI 
Initial intelligence in smart homes was dominated 
by the use of centralized models of AI whereby the 
user information of various households is reduced 
into a central server to train the AI models in it and 
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construct inference. The presence of a variety of 
data frequently made these models very accurate 
and possessing great personalization options. 
Nonetheless, such a thing gives rise to great risks 
to the privacy of data, and contradicts data 
sovereignty principles. Ethically and legally, the 
processing and storage of data centrally have 
emerged as an issue as more regulations are being 
added, including the GDPR and the CCPA. 
 
2.2 Federated Learning 
McMahan et al. [1] propose Federated Learning, 
which is a privacy-preserving option that allows 
the device to locally train their model without 
providing raw data. FL frameworks such as FedAvg 
combine model updates on client devices to form a 
common shared model. Even though this method 
counteracts the problem of privacy, it has related 
drawbacks of non-IID data distributions, slow 
convergence, and low personalization in 
heterogeneous smart homes. Such constraints limit 
the ability of FL in the settings in which users 
display very different behavior patterns and 
sensor configurations. 
 
2.3 Meta-Learning 
Under the rubric of Meta-Learning, or learning to 
learn, as suggested by Finn et al. [2], models learn 
to learn at a fast rate even after few data samples 

are used to adapt new tasks. This comes in very 
handy where the data is rare or dynamic. On the 
one hand, meta-learning has the advantage of 
being highly customizable in a short amount of 
time, but on the other, it requires the existence of a 
centralized meta-dataset and does not include 
privacy-respecting mechanisms in its core 
functionality, which are factors that do not allow it 
to be applied directly to smart home settings 
without the introduction of significant changes. 
 
2.4 Federated meta-learning 
Studies have recently tried to merge the 
advantages of FL and ML. A FedMeta [3] by Chen et 
al. is one example that provides federated systems 
with meta-learning principles allowing quick 
adaptation in the context of his or her clients. 
Additional research is devoted to federated edge 
AI and smart home ecosystems [4; Yang et al., 
2022]. In this research, the possibilities of the 
edge-based collaborative intelligence are 
considered. Nevertheless, these contributions do 
not show a special focus on heterogeneity of smart 
homes, such as variabilities of sensor varieties, 
user preferences, and time limits in real-time 
control. Also, the majority of works fail to take the 
complete range of privacy threats in the multi-
agent setting into account. 

 
Table 1. Comparative Review of Related Approaches 

Research Area Summary Limitations 
Centralized AI in Smart Homes Personalized but privacy-

invasive 
Data centralization risks and 
regulatory non-compliance 

Federated Learning Preserves privacy via 
decentralized training 

Lacks personalization, 
inefficient in non-IID settings 

Meta-Learning Enables fast adaptation 
with minimal data 

Lacks privacy guarantees and 
real-time feasibility in edge 
environments 

FL + Meta-Learning (Recent 
Works) 

Promising synergy for 
personalization and privacy 

Limited adaptation to smart 
homes; inadequate handling of 
system heterogeneity 

 
The state-of-the-art is further advanced by 
developing a federated meta-learning framework 
specializing in the peculiarities of smart home 
ecosystems and proving its effectiveness. Our 
method maximizes in both personalization and 
privacy coupled with keeping a check on the 
computational and communication efficiency of 
heterogeneous private settings. 
 
3. System Architecture 
The advanced Federated meta-Learning system 
aims to facilitate client-individualized, confidential 
AI services in sensible habitats. The architecture 
makes going decentralized and adapting fast as 
well as considerations of privacy, heterogeneity of 
systems and computational constraints are dealt 

with. It is made up of four main elements: smart 
home nodes, edge-coordinated federated meta-
learning loop, secure aggregation infrastructure as 
well as privacy enhancing security layer. Figure 1 
presents an overview of the constituted system 
architecture diagram. 
 
3.1 Overview of System Diagram 
This architecture involves several smart agent 
homes (individual homes with IoT equipment), 
which communicate with edge gateways, and with 
each other, in coordination with a federated 
server, running under another trusted edge fog or 
cloud framework. Orchestration of meta-learning 
is done by the central federated server that 
distributes initial model parameters and gathers 
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meta-updates. Each smart home node uses its 
environment and builds a local model and does not 
revert to the server raw data but only preferences 
in form of encoded model changes. Meta-learning 

loop supports rapid adaption, because the server 
has learned initialization parameters that 
generalize over a wide variety of homes. 

 

 
Figure 2. System Architecture of Federated Meta-Learning Framework for Smart Home Ecosystems 

 
3.2 SMART HOME Node 
Any smart home node is like an independent 
learning entity with a network of Internet-of-
things devices like smart lamps, heating controls, 
CCTVs, motion sensors, and smart assistants that 
respond to voice commands. The devices gather 
multimodal data always depicting the behavior of 
users, conditions of their environments, and the 
contexts of interaction in the house. In order to 
keep communication overhead to a minimum and 
to keep users privacy preserved, raw sensor data is 
preprocessed locally, i.e. normalized, filtered, and 
converted into feature vectors in structural 
formats that can be fed to the machine learning 
algorithms. This processed information is then 

used to teach and train a lightweight model of AI 
with just some steps of optimization that can 
enable the device to tune a common global 
initialization to unique local circumstances. 
Instead of sending the raw data, the updates of 
only the model are sent to the central federated 
server by each node e.g. the gradient vectors or the 
optimized weight parameters. This distributed 
learning strategy guarantees that no individual 
data would be sent outside the home setting, but at 
the same time, allowing the international model to 
benefit with the opening of collaborative training. 
Finally, the system enables AI models to learn the 
individual user behavior and preferences privately 
and efficiently in terms of communication. 

 

 
Figure 3. Internal Architecture of a Smart Home Node for Federated Meta-Learning 

 



46 Electronics, Communications, and Computing Summit | Jan - Mar 2025 

 

C.C. Kingdon et al / Federated Meta-Learning for Privacy-Preserving AI in Smart Home Ecosystems 

 

 

 
 

3.3 Federated Meta-Learning Loop 
The proposed system contains a Federated Meta-
Learning (FedMeta) loop to capitalize on the best 
of both worlds: the speed of Personalization of 
Federated Learning (Federa- ted Learning (FL)) 
and the adaptability of Model-Agnostic Meta-
Learning (MAML) to put from scratch privacy-
preserving Personalization of smart home settings. 
The step entails the server starting with a global 
meta-learner model that has parameters θ, learned 
in the past federated training rounds. The 
individual clients (e.g. smart home device) in turn 
then do local adaptation via inner-loop 
optimization, on their own data, refining the θ into 
the more specific task model θ i. This adaptation 
adopts the philosophy of MAML, which enables the 

model to learn to learn using few local data. Within 
the outer loop, the server sums up the gradient 
updates or loss differentials ∇L_T(θᵢ) that it 
receives on clients to re-estimate the global meta-
model, devoid of raw data. This repetition of the 
process of communication takes part in various 
rounds of communication until a strong and 
generalizable end is reached, or until the model 
converges. A meta-model once trained can be 
personalized in short time by new clients with only 
a few local gradient steps which allows real-time 
inference and responsiveness without retraining 
the entire model. This is a scalable and efficient 
architecture that provides high levels of privacy to 
data using intelligent, personalized services. 

 

 
Figure 4. Federated Meta-Learning Loop for Personalized and Privacy-Preserving Smart Home AI 

 
3.4 Privacy and Security Layer 
Since data recorded in the smart home setup, 
including voice commands and behavioral patterns 
is quite sensitive, implementation of a complete 
package of privacy-preserving tools is proposed to 
ensure user data is not compromised at any point 
of data lifecycle in the proposed architecture. 
Differential Privacy (DP) is utilized to local weeks 
of updates by including well-tuned noise before 
sending, and can provide formal re-identification 
security guarantees, and reduce the threat of 
signature of data leakage through shared 
gradients. Further, to achieve additional security, 
Secure Aggregation Protocols such as 
homomorphic encryption or secure multiparty 
computation allow any contribution on the 

federated server model parameters, but do not 
reveal the personal contribution of any device. 
Locally, a more extreme version of Differential 
Privacy is used, the Local Differential Privacy 
(LDP), which anonymizes both especially sensitive 
input Prior to any local computation, the input 
may, e.g., be audio or video streams. This is 
particularly important in the case of common 
households where there can be various users 
including children that touch smart devices. The 
combination of these layers results in a strong 
privacy solution that can help guarantee end-to-
end protection of information and make the 
system GDPR/CCPA compliant and increase 
consumer trust in the smart home service 
promoted with AI. 
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Table 2. Privacy-Preserving Techniques across the Federated Meta-Learning Pipeline 
Privacy Technique Applied Stage Purpose Benefits 

Local Differential 
Privacy (LDP) 

At Data Source (IoT 
Device) 

Obfuscate raw inputs 
(e.g., audio, video) before 
processing 

Protects sensitive user 
interactions before 
computation 

Differential Privacy 
(DP) 

On Local Model 
Updates 

Add calibrated noise to 
gradient vectors 

Prevents leakage of 
individual data through 
shared models 

Secure Aggregation Server-Side 
(Federated Server) 

Aggregate encrypted 
model updates from 
multiple clients 

Prevents server from 
accessing individual 
contributions 

Homomorphic 
Encryption 

During 
Communication 

Enable computations on 
encrypted data 

Ensures model updates 
remain encrypted in 
transit 

Multiparty 
Computation (MPC) 

Aggregation Phase Distribute computation 
among non-colluding 
parties 

Prevents single-point 
data exposure during 
aggregation 

 
4. METHODOLOGY 
4.1 Formulation of the problem 
Specifically in the case of personalized AI enabling 
smart home, every house has its own peculiarities 
of the environment, user habits, and device 
settings. Thus the learning task in one of the smart 
home settings could be modelled as separate 
tasks𝑻𝟏, 𝑻𝟐, … , 𝑻𝑵, where N is the number of 
homes in the federated learning environment. 
There is a local dataset 𝑫𝒊associated with each task 
𝑻𝒊and the datasets are not shared outside their 
own node. 
Our federated meta-learning framework aims to 
ensure that each smart home can fast-track the 
process of personalizing the model by training a 
few optimization steps with only a small number 
of local data by learning a global model 
initialization θ. This idea corresponds to the 
principles of Model-Agnostic Meta-Learning 
(MAML), that is, by optimising the initial 
parameters (usually called wrapper parameters) it 
is possible to efficiently fine-tune the initial 
parameters to new tasks, thus acting as a meta-
learner. 
The client does inner-loop optimization to 
optimize the global model𝜽using its local loss 
function𝑳(𝑻𝒊) and learning rate 𝑳(𝑻). This gets us 
the personalized model: 

𝜃𝑖 = 𝜃 − 𝛼∇𝜃ℒ𝑇𝑖
 𝜃  

This step is actually one step of the gradient 
descent algorithm, but several have to be done 
based on the capacity of the device and on the 
requirements of convergence. After all 
participating clients have conducted their local 
adaptation, the meta-learner (central server) can 
conduct an outer-loop update that may be used to 
optimize their shared initialization 2. The update 
combines the gradients of the loss at the adjusted 
parameters 𝜃𝑖SHIFT NYULE 2009 acquis, typed 

𝜃 ⟵ 𝜃 − 𝛽 ∇𝜃ℒ𝑇𝑖
 𝜃𝑖 

𝑁

𝑖=1

 

This bi level optimisation loop then revolves 
through a number of rounds. The inner loop will 
allow quick personalization per client using local 
data but the outer loop will make sure that the 
global model evolves into progressively being 
more generalizable over all tasks. The beauty of 
this method is that it identifies task invariant 
knowledge to produce fast learning rates in unseen 
conditions, and thus would be very applicative in 
wide-ranging and various smart-home ecosystems 
that are dynamic. 
 
4.2 Algorithms 
The fundament of the proposed federated meta-
learning system construction is made up of the 
principles of Model-Agnostic Meta-Learning 
(MAML) gradient-based meta-learning algorithm 
which seeks an optimal model initialization that is 
able to rapidly adapt to new tasks with a small 
number of gradient steps. In our scenario, every 
task represents a different smart home with its 
own local data distribution and therefore MAML is 
best use case to consider the problem of 
personalization in heterogeneous smart homes. 
The algorithm is bi-level optimization, in which 
every node (client) of the smart home does a local 
inner-loop update of adjusting the global model to 
its local context, and the central server does an 
outer-loop update optimizing the shared model 
initialization across tasks. 
The next steps are carried out at every 
communication round: 
1. Server side Model Initialization: The clients 

computer determines the models 
environment (global parameters) of model θ 
to be used and sends the model parameters to 
all the clients. 
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2. Inner-Loop Fine-Tuning (Client Side): 
Individual clients are given the same global 
model and optimized it with only a local 
gradient updates on local data and produce 
task specific model𝜃𝑖 . This will be a step to 
personalize the model by applying an 
adaption procedure in MAML: 

𝜃𝑖 = 𝜃 − 𝛼∇𝜃ℒ𝑇𝑖
 𝜃  

3. Server Side Outer-Loop Meta-Update: 
Customers calculate the gradients of their 
fine-tuned models, and transmit them back to 
the server. These updates are then averaged 
out by the server, through a federated 
averaging approach (FedAvg), and the meta-
update is carried out: 

𝜃 ⟵ 𝜃 − 𝛽 ∇𝜃ℒ𝑇𝑖
 𝜃𝑖 

𝑁

𝑖=1

 

This makes the overall initialisation progressively 
cost-effective to future change. 
The federated learning frameworks, which are 
TensorFlow Federated (TFF) and PySyft 
(https://pysyft.org), are used to implement the 
algorithm to encompass data privacy and 
scalability, characterized by the support of secure 
aggregation, differential privacy, and hardware 
heterogeneity. These frameworks facilitate an easy 
simulation and deployment of federated learning 
pipelines with a potential for inclusion of 
differential privacy mechanisms and protocols to 
secure communications in the training pipeline. 
In general, the use of this hybrid strategy allows to 
merge the flexibility of MAML adaptation and 
effective communication of FedAvg into a highly 
personalized, privacy-focused, and scaleable AI 
training system ideally suited to smart home 
environments. 
 
5. Experimental Setup 
5.1 Datasets 
As it is difficult to thoroughly train and test the 
suggested privacy-preserving federated meta-
learning framework without such hybrid dataset 
approach, real-world, synthetic, and privacy- 

sensitive data sources were combined contributing 
to the representation of various modalities existing 
in the smart home environment. The key aspect of 
this fashion was the deployment of CASAS Smart 
Home Dataset, which is a well-known benchmark 
that offers the rich and annotated time-series data 
acquired in the real residential environment. It 
contains the ambient sensor data, including the 
aspect of motion detection, use of doors, and 
appliances, which provide valuable insights into 
typical human behavior patterns and creates the 
possibility of modeling life-like activity recognition 
tasks. In order to increase the variability of 
training situations as well as their coverage, we 
created a Virtual Smart Home Simulator that can 
create synthetic datasets of how real-time sensor 
values may change due to the occupancy pattern, 
the changes in the illumination, the activity of the 
HVAC systems, and user-initiated events and put it 
in action in unknown temporal and contextual 
conditions. This synthetic data had the additional 
benefits of using it as pretraining data and 
augmenting edge devices where the real-world 
data is not readily available. 
The framework also included privacy-sensitive 
datasets based on real deployments, such as 
encrypted log of voice commands, motion 
detection data not requiring cameras, and 
temperature measurements in the surrounding 
area. Different types of such data were processed 
with the help of the differential privacy method in 
order to guarantee the confidentiality of users in 
the process of federated training. Through 
integrating privacy-sensitive analysis into the data 
preprocessing and model aggregation phases, the 
framework was strictly compliant with the data 
privacy laws, including GDPR and CCPA, even in 
multi-user and context-sensitive applications. This 
privacy-sensitive and holistic data approach does 
not only enhance the model to better generalize 
among all clients (both heterogeneous in nature) 
but it also proves the capacity of both the model to 
make precise and personalized inferences without 
risking the trust and security of the users. 

 
Table 3. Overview of Datasets Used for Federated Meta-Learning Evaluation 

Dataset 
Type 

Source Modality/Features Purpose Privacy 
Handling 

CASAS 
Smart 
Home 
Dataset 

Real-world 
(Washington 
State University) 

Motion sensors, door 
usage, appliance activity 

Activity 
recognition, time-
series modeling 

Anonymized; 
public benchmark 

Synthetic 
Smart 
Home Data 

Custom Virtual 
Smart Home 
Simulator 

Simulated occupancy, 
lighting, HVAC behavior, 
contextual triggers 

Data augmentation, 
model pertaining 

No real user data; 
used for training 
robustness 

Privacy-
Sensitive 
Home Data 

Real smart home 
deployments 

Voice commands, camera-
free motion events, 
temperature logs 

Evaluate privacy-
preserving learning 
performance 

Encrypted + 
Differential 
Privacy applied 
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5.2 Evaluation Metrics 
In order to thoroughly gauge the suggested 
federated meta-learning system inside the premise 
of privacy-sensitive smart homes, a 
multidimensional group of evaluation criteria was 
used to study both the performance of the models 
and the system-scale limitations. The main 
functional evaluation measure was accuracy, 
which means the classification accuracy in the 
device on real tasks, including activity recognition, 
anomaly detection, and device usage prediction. 
This metric is measured once the local 
convergence is reached and represents the 
possibility of the modeling to become applicable to 
the sensor data and user behaviors in reality. The 
Personalization Time which was used to measure 
the time it took the global meta-model to 
customize to a new client or household by utilizing 
minimal local updates was also important. This 
indicator is essential in evaluating whether the 
meta-learning framework can be responsive to 
user needs, since easily adaptable systems and 
satisfied users are the key factors defining the 
quality of smart home operation in variable 
environments. 

At the same time, Privacy Leakage Risk has been 
assessed to ascertain the ability of the system to 
withstand inference attacks, specifically, 
membership inference attacks used to detect the 
likelihood of a given user having contributed their 
information to the training procedure. The 
reduced success rate in such attacks would be a 
sign of a higher privacy protection and this proves 
that the use of differential privacy and secure 
aggregation mechanisms incorporated in the 
system would be effective. At last, the metric 
Communication Cost was evaluated as the total 
amount of data transferred between the edge 
nodes and the central server within each of the 
training rounds. The metric has a particular 
importance to the smart home environment since 
bandwidth and energy limitations require low data 
transfer. It takes into consideration the scale and 
rate of upgrade of models and the client base that 
is involved in the process. Taken altogether, these 
measures will make a holistic review of the system 
accuracy, flexibility, privacy robustness, and 
efficiency, and it can be regarded that the 
framework is not only technically but also 
practically viable to be used in decentralized and 
privacy-conscious smart home environments. 

 
Table 4. Evaluation Metrics for Federated Meta-Learning in Smart Homes 

Metric Definition Purpose/Importance 
Accuracy Percentage of correct 

predictions on local smart home 
tasks 

Measures model generalization and 
inference quality on real-world 
data 

Personalization Time Time taken to adapt the meta-
learned global model to a new 
household’s data 

Evaluates responsiveness and 
adaptability of the model to user-
specific behavior 

Privacy Leakage Risk Success rate of membership 
inference or model inversion 
attacks 

Indicates the strength of privacy 
mechanisms like DP, LDP, and 
secure aggregation 

Communication Cost Total size of model updates 
exchanged per training round 

Assesses bandwidth efficiency and 
scalability in resource-constrained 
environments 

 
6. RESULTS AND DISCUSSION 
As revealed by Table 2, their experimental results 
tend to prove the relative success of three learning 
paradigms, including Centralized CNN, traditional 
Federated Learning (FedAvg), and the proposed 
Federated Meta-Learning (FedMeta) technique, 
introduced with the utilization of the differential 
privacy mechanisms. Although a centralized CNN 
has the highest level of accuracy, i.e. 93.2%, has 
high privacy leakage risk and communication 

overhead and thus cannot be used in privacy-
sensitive and bandwidth-limited smart home 
contexts. FedAvg, on the contrary, was less risky in 
terms of privacy but with a much lower 
communication cost, having an accuracy of 88.6% 
with a moderate adaptation time, which took 10 
rounds. Nevertheless, it was also deficient in 
providing both quick personalization and in the 
need of long federated updates to adjust to new 
users or machines successfully. 
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Figure 5. Comparative Evaluation of Centralized, Federated, and Federated Meta-Learning Models in 

Smart Home Environments 
 

The FedMeta framework generated proved to 
perform fine in all major measures. It achieved an 
accuracy of 91.9%, and this value is slightly below 
that of the centralized baseline, but significantly 
greater than that of FedAvg. It is important to note 
that, personalization time was also significantly 
decreased to 2 rounds, which means that the 
system could quickly adjust to new environment 
or users with minimal information and training. 
Moreover, the risk of the privacy leakage was 
much smaller because of the theoretically used 
differential privacy techniques and due to the 

decoupling of raw data with model updates. The 
optimization with the help of meta-learning also 
minimized communication cost because it 
decreased the number of update rounds and data 
transfers. On the whole, the suggested 
methodology shows that meta-learning in 
combination with privacy-enhancing measures can 
be used to extend user-adaptive, robust, and highly 
efficient models that can be applied in the smart 
home ecosystem to achieve a trade-off between 
personalization accuracy, privacy preservation, 
and the communication efficiency of the system. 

 
Table 5. Comparative Performance of Centralized, Federated, and Federated Meta-Learning Models 

Metric Centralized CNN Federated 
Learning 
(FedAvg) 

Federated Meta-
Learning 

(FedMeta) 
Accuracy (%) 93.2 88.6 91.9 
Personalization Time (Rounds) 0 10 2 
Privacy Leakage Risk High Moderate Low 
Communication Cost (Units) High Medium Low 

 
7. CONCLUSION 
The project proposes an innovative and efficient 
privacy-sensitive AI algorithm which is 
appropriate in smart home ecosystems through 
the synergetic combination of Federated Learning 
(FL) and Meta-Learning concepts. The FedMeta 
architecture design resolves two critical challenges 
of model adaptation to the specifics of individuals, 
privacy, and efficiency on distributed smart 
environments. The framework provides a 
reasonable trade-off between performance and 
confidentiality because it can personalize devices 
within seconds of communication overhead and is 
resistant to privacy attacks. The use of the 
differential privacy methods also increases 
credibility, as the sensitive information about the 
users will be secure in the process of training. The 
empirical analysis proves the FedMeta to be more 

effective than standard FL approaches when it 
comes to adaptation rate, privacy protection, and 
precision, which confirms the precondition of its 
real-world implementation. Move forward Future 
research on this framework will be extended to the 
live smart home testbeds and investigate real-time 
user interaction and incorporate the latest privacy-
preserving technologies like homomorphic 
encryption, secure multiparty computation or 
utility and blockchain-based trust framework to 
strengthen the end-to-end system safety and user 
data sovereignty. 
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