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In this article, a new architecture on Field-Programmable Gate Arrays
(FPGAs) is depicted as a hardware accelerator that enables the
deployment of Spiking Neural Networks (SNNs) to the edge-Al wearable
device. As a third generation of neural models, SNNs make use of
biologically plausible spike-based communication that can implement
asynchronous, event-driven computation, consuming much less energy
than synchronous neural models. This makes them very apt to use in
wearable applications that favor continuous sensing, low latency and
repeat ultralow-power. Although this is promising, there are limited
approaches on SNN deployments on wearable environments with
constrained resources by virtue of an absence of designs that support
scalable and energy-conscious hardware implementations. With a view
to filling the gap, we design and test a modular and configurable SNN
accelerator on the Xilinx Artix-7 FPGA that is specifically adapted to
embrace Leaky Integrate-and-Fire (LIF) neurons featuring temporal
dynamics, and sparse events propagation. Such architecture uses
pipelined units to process neurons, fixed-point arithmetic, events-based
routing schemes, and are latency-optimized and memory efficient. We
test the suggested accelerator with two typical tasks defined such as
gesture recognition and classification of ECG with the DVS Gesture
dataset and the PhysioNet signal respectively, both being essential in
health monitoring and human-computer interaction. Through
experiments, we realize that our accelerator can reduce energy
consumption and inference latency (by 60 percent and 35 percent,
respectively) and improve accuracy when compared to standard CNN-
based FPGA accelerators. In addition, the design does fit less than 60
percent of logic resources on the Artix-7 device, which gives the design
space to add more sensor interfacing and communication logic, as may
be needed in real-life wearable systems. The above results prove that
the experiment with the use of neuromorphic computing paradigms on
low-cost, battery-powered edges is viable and productive. The idea
suggests a remarkable step towards the incorporation of real-time,
energy-aware smarts into wearable devices and technology of the
future, as well as unfulfilled potential to inform applications which will
perform non-stop biomedical surveillance, gesture-based control
systems and on-board known anomaly detection in the health and
fitness fields.

1. INTRODUCTION

The growth in edge artificial intelligence (Edge-Al)

Neural Networks (CNNs) are applied in these
gadgets owing to the large computational

has transformed the wearable technology sector,
where real-time, on-device inference became
possible leading to applications that include health
sensors, activity detection, and gesture control.
The wearable systems are supposed to conduct
constant analysis of data whilst having rigorous
demands on latency, power consumption and form
factor. Nevertheless, very few conventional deep
learning models especially the Convolutional

requirement and energy wastage. These models
usually have large memory accesses, and huge
floating point operations that cannot be
compatible with the environment having energy
restrictions and thermal limits as in the case of
wearables. Therefore, alternative computing
paradigms that can be used to provide intelligent
inferring at the edge and with minimum power
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and resource overhead are
importance.

An exciting prospect in solving the problem of
ultra-low-power Al implementation is Spiking
Neural Networks (SNNs), which emulate many of
the temporal properties and spike-timing encoding
behaviour of biological neurons. No more than
conventional neural networks, SNNs are event-
based, firing only when certain input spikes occur.
The property saves power not only by avoiding
redundant operations but also naturally helps
realize sparse data flow and asynchronous

increasing in

processing, contributing to commensurate energy
and latency requirements in wearable apps.
Nevertheless, implementation of SNNs effectively
on edge hardware faces a few issues. Currently
functional neuromorphic systems such as the Intel
Loihi or the Spinnaker platform provide high levels
of computation but cannot be feasible or physically
organized in a small and wearable battery driven
gadget. Furthermore, SNN simulators based on
software do not offer the real-time responsiveness
requirement of responsive interaction and health-
critical monitoring.
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Figure 1. SNN-Based FPGA Accelerator for Wearable Edge-Al

Here, Field-Programmable Gate Arrays (FPGAs)
offer an attractive hardware platform in which to
implement SNNs because the hardware is fine-
grained, highly configurable, and consumes little
power. However, most of the body of work on
accelerating SNNs has been on concentrated on
high-performance platforms like GPUs or ASICs,
and few have looked at low-cost FPGA-based
implementations attached to the wearable edge.
The current paper addresses such a gap by
proposing a lightweight, scalable architecture of an
SNN accelerator that is designed to be specifically
optimised to the target FPGA such as the Xilinx
Artix-7. This work may have several contributions:
(i) hardware design: a modular architecture
allowing run of event-driven LIF neurons neuron
models with minimal latency and power
requirements, (ii) system-level optimizations:
fixed-point computation, memory management,
(iii) empirical applications: the use of real world
biomedical data sets, DVS Gesture and PhysioNet
ECG where the proposed system provided
substantial energy savings and speedups over
conventional CNN-based methods. This paper

provides the basis of feasible, neuromorphic-
enabled wearable edge-Al.

2. RELATED WORK

Spiking Neural Networks (SNNs) have drawn
significant interest owing to its bio-inspired
computation framework and intrinsic energy
efficiency properties, and this makes them ideal
candidates to run edge-Al applications. A number
of hardware implementations to accelerate SNNs
are proposed in the literature with different trade-
offs regarding programmability, power
consumption, and practicability of use in wearable
devices.

Perhaps the best-known SNN implementation is
Intel Loihi neuromorphic chip [1], an application-
specific integrated circuit (ASIC) that enables the
operations  of  asynchronous  event-based
processing with learning functionality. Loihi is
proprietary and non-programmable, and is
restricted in accessibility and cost, thus not
applicable in the low cost wearable systems.
Although it gives good power, and real-time
performance, it has other limitations to providing
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integration by the cost of its proprietary and non-
programmable nature. Likewise, a real-time
massively parallel implementation of large-scale
SNNs in the SpiNNaker platform [2], a University of
Manchester research project, uses a millisecond
(or more) time step to simulate larger networks in
real time. Despite accommodating real-time neural
simulation and scalability, SpiNNaker is heavy,
power consuming and deployed only in the
research and laboratory domain and not in the
portable domain.

By contrast, FPGAs provide a more elastic and
reconfigurable solution to implementing edge-Al.
Assigning a concern to wearable devices, similarly,
a CNN-based inference engine designed on the CPU
in low-power FPGAs was proposed by Zhao et al.
[3]. Though their design reached real time
performance, CNN architectures require dense
computation and frequent accesses to memory,
which takes more energy than spike-based models.
Also, these types of architectures do not emulate
sparse and asynchronous inputs common in
wearable sensors because of a lack of the temporal
coding and event-based behavior that are essential
to efficient processing.

Considering these drawbacks, it can be noted that
the proposed work presents an FPGA-based SNN
accelerator designed to support wearable edge-Al
apps. This benefits by taking the event-based
advantages of SNNs, but improving the hardware
efficiency traditionally offered by FPGAs, allowing
an acceptable tradeoff between performance,
power consumption, and hardware footprint. In
particular, the execution on Xilinx Artix-7 offers
the cost-efficient and portable neuromorphic
solution which fills the vacuum of the current ASIC
and general-purpose hardware platforms.

3. METHODOLOGY

3.1 SNN Model Architecture

The essence of the suggested accelerator is the
Spiking Neural Network (SNN) which uses discrete
time events, also known as spikes, to simulate the
functioning of natural brain neurons. SNNs exhibit

a sparse and time-driven propagation and
transmission of information compared to
conventional artificial neural networks that

require continuous expects on a dense basis, which
makes SNNs appropriate to low power, low
latency, edge-Al systems like wearables.

The mentioned SNN is guided by a computation
model of biological neuronal dynamics also known
as the Leaky Integrate-and-Fire (LIF) neuron
model and is a popular model. In this model, spike

inputs (received over time) are accreted by
neurons so as to combine. Their potential fails to
leak out or lose out with time unless they receive
spikes to signify the effect of loss of charge by
biological neurons. Once it has attained a specific
level of membrane potential the neuron fires an
output spike and returns to a nominal value in
membrane potential. The membrane potential
V(t)in the mathematical description is adjusted
during any time step t as follows:

V(t+ 1) =x V(O + Z wi % (t)

1
Where X is the leak factor (0 < A < 1), w; is the
synaptic weight, and x;(t)denotes the presence (1)
or absence (0) of an incoming spike from the i-th
input.
This architecture learns based on the Spike-Timing
Dependent Plasticity (STDP), unsupervised
learning rule, biologically plausible type of
learning, in which the synaptic weight is modified
according to the relative time between a
presynaptic and postsynaptic spike. But in order to
decrease on-chip-based complexity and latency,
the current implementation uses pre-computed
STDP-based weights, trained offline, and then
stored offline in memory to be executed on the
FPGA during inference time. This enables the
accelerator to concentrate on forward spike
propagation without the hardware overload of real
time learning, a characteristic ideal in wearable
application.
The network topology is in the form of a three-
layered topology subsequently comprising an
input layer, a hidden layer and an output layer. The
input layer represents sensor signals (e.g. DVS
events or ECG samples) by rate-based or temporal
encoding schemes and express them as a tuple of
spikes in a spike train. The nonlinear
transformation and temporal pattern detection in
the hidden layer is done by a population of
(nonlinear) LIF neurons with different receptive
fields. The output layer combines the structures of
the responses into a spike and overall decision is
based on count of spike or time-to-first spike logic.
Such simplicity in architecture makes the SNN
model computation light-weight and hardware
friendly, and also able to process temporal data
streams in real-time efficiently. The three-layer
SNN architecture provides both a trade-off
between inference and computational capacity and
a good option to the edge-Al tasks of wearable
health and activity tracking.
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Figure 2. Three-Layer SNN Architecture with LIF Neurons for Wearable Edge-Al

3.2 Design of FPGA Accelerator

This recommended FPGA-based hardware
accelerator has been beautifully designed to be
able to run Spiking Neural Networks (SNNs)
efficiently on resource-restricted edge devices.
Development is based upon four major functional
blocks working to provide low-power, low-latency
operation together: the Neuron Processing Unit
(NPU), Event Router, Memory Controller, and
Interface Logic. The modules are optimized with 1)
modularity, 2) scalability and 3) suitability to real-
time wearable applications.

A. Neuron Processing Unit (NPU)

The central plumbing block is the Neuron
Processing Unit or NPU that actually implements
Leaky Integrate-and-Fire (LIF) neurons in
compounds. Every instance of NPU is charged with
computation of membrane potentials of a set of
Neurons, decay(leak), assuming of the incoming
spikes in the input layer and conversion to spikes
when the potential exceeds threshold. Every
arithmetic operation in the NPU takes fixed-point
representation (Q4.11 format), to maximize
performance and resource utilization by allowing
far fewer logic gates to be used and less overall
power to be expended than with floating-point.
NPU pipeline contains the following sub-stages:
spike input detection, membrane potential update,
threshold check, spike generation, and reset.

B. Event Router

Event Router enables cross-layer communication
between neurons through propagation of spike
events in sparse and asynchronous manner. It uses
a sparse event-driven switches using compressed
sparse row (CSR) encoding of the synaptic
connections. This organization lowers bandwidth

and memory footprint of dense connectivity
representations. The router dynamically routes
destination of spikes from a pre-stored routing
table and activates downstream NPUs with a small
amount of latency. Through the natural sparseness
of SNNs, Event Router plays a great role in savings
of energy and throughput efficiency.

C. Controller of Memory

Access to on-chip Block RAM (BRAM) storing pre-
trained synaptic weights, neuron states and
routing tables is coordinated through the Memory
Controller. The controller supports dual-port
access and circular buffering to avoid the
contention to achieve deterministic latency.
Weights are saved in an encoded fixed point
representation and memory access patterns are
optimized by prefetching addresses and fetched
via spike triggered weight fetch. This creates the
potential to access the parameters of synapses in
real time without causing stalls in the neuron
pipeline even at high spiking frequencies of the
inputs.

D. Interface Logic

Interface Logic block is in charge of the smooth
connection to the outside smetors and
microcontrollers providing the possibility of real
application in wearable systems. It has both Serial
Peripheral Interface (SPI) and Inter-Integrated
Circuit (I2C) protocols of low-power data
acquisition, e.g. Imu, DVS cameras, or ECG
modules. It has an interrupt-driven clock-gated
logic to become energy efficient in idle times. It
also offers a buffering and synchronization
functionality that renders non-synchronous sensor
data with the accelerator processing pipeline.
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Figure 3. Block Diagram of the FPGA-Based SNN Accelerator for Edge-Al.

3.3 The Top Strategies of Optimization

The SNN accelerator proposed aims to achieve the
extremely high requirements of power and latency
of edge-Al-based wearable devices and
incorporates many hardware-based optimization
techniques. Such optimizations are aimed to
minimize the usage of resources, provide better
throughput, and reduce the dynamic consumption
of power without affecting the level of accuracy of
calculations and the flexibility of the systems.

A. Neuron Optimization of pipelines of
operations

The neuron processing pipeline (integration of
membrane potential, decay, leakage, comparison of
threshold and generation of spike) was well
divided into separate and independent stages of
pipeline. Using deep pipelining the architecture
enables simultaneous use of many neurons at
various points of the computation and enhances
the throughput by a large magnitude. In this
design, when a neuron is updated, the operation
takes place during one clock cycle per stage, and
thus its performance can be scaled to high input
spike rates. There is also the interleaving of
pipelines throughout the clump of neurons so as to
preclude delays in computation when accessing
synaptic memory or conducting a spike
transmission.

B. Presicion of Fixed-Point Arithmetic (Q4.11)

Floating point operations are precise yet
computationally costly which requires too much
hardware resources, especially the logic slices and
DSP blocks. To overcome this, the SNN accelerator
does all its arithmetic operations (including

membrane potential accumulation, and weight
multiplication in the synaptic weights) with a
Q4.11 format. Such representation can achieve a
trade-off between numerical accuracy and
processor performance tradeoff where both
positive and negative potentials can be
characterized with enough resolution to achieve
biologically plausible dynamics. Consequently, use
of LUT and DSP is much lower and the design can
be implemented cost-effectively in low-end FPGAs
like the Xilinx Artix-7.

The third category is C. Clock Gating and
Power-Aware Control

Clock gating is also employed, both at the module
and sub-module levels to spend even less dynamic
power. Idle NPUs, idle spike routers and idle
memory interfaces are gated off (by disconnecting
their clocks) when idle during an idle period. Input
readiness signals and spike events are used to
produce activity-detection flags to control the
gating logic. The technique can considerably
decrease both switching activity and dynamic
power that is essential to the energy-limited
wearables. Besides, non-dynamic areas of the
design, such as routing tables and weights that
have already been trained, will be assigned to low-
leakage BRAM areas in order to restrict the
excessive energy consumption.

The combination of such optimization schemes
allows the SNN accelerator to work in real-time on
limited resources and energy budgets, and it is,
therefore, well-suited to constantly-on wearable Al
applications. It is fast, precise and powerful
enough to achieve a high degree of scalability in
terms of sensor modalities and SNN topology.
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Figure 4. Optimization Strategies for SNN Accelerator Design

4. Experimental Setup

An extensive experimental framework was set to
test the performance and effectiveness of the
suggested FPGA-based Spiking Neural Network
(SNN)  accelerator. The  hardware  was
implemented on a low cost, moderate logic
capacity development board, the Xilinx Artix-7
FPGA development board (XC7A35T) that meets
the constraints of a wearable system logic
capacities. The entire hardware synthesis and
deployment process was done using Xilinx vivado
Design Suite (version 2022.2) whereas firmware-
level integration was handled on the Xilinx SDK.
Two publicly available and socially relevant
datasets of similar scope and scale to the intended
application (the DVS Gesture dataset, to which
event-based spatiotemporal patterns acquired
using dynamic vision sensor are provided, in order
to be used as a gesture recognition tool, and the
PhysioNet ECG dataset, which consists of
electrocardiogram time series data and can be
used as real-time cardiac anomaliy detector) were

utilized to demonstrate functional validation and
benchmarking of the proposed methodology. The
datasets will equate to real world conditions of
wearable health and interaction monitoring. The
SNN model was run in accelerator hardware first
offline on STDP-inspired rules and the weights
stored as hard-coded quantized values of fixed
point. To provide an opportunity to compare with
the benchmarking, two baseline models were
retrained: (i) lightweight TinyML CNN on the same
Artix-7 FPGA and (ii) STDP trained SNN on the
Intel Loihi neuromorphic platform. Performance
metrics were classification accuracy, inference
latency (in microseconds) power consumption (in
milliwatts as measured using onboard sensors),
and logic utilization (in LUTs and BRAM blocks
used). Such experimental design allowed
comparing the energy efficiency and real-time
performance directly in the context of wearable-
relevant workloads and confirmed the efficiency of
the accelerator to outperform existing models both
in computational and power-limited applications.

Table 1. Summary of Experimental Setup and Evaluation Parameters

Component Specification / Description

FPGA Board Xilinx Artix-7 (XC7A35T)

Toolchain Vivado 2022.2, Xilinx SDK

Datasets DVS Gesture (gesture recognition), PhysioNet ECG (cardiac anomaly)
Model Variants Proposed FPGA SNN, TinyML CNN, STDP SNN on Intel Loihi

Training Method | Offline-trained SNN with STDP-based fixed-point weight mapping
Metrics Used Accuracy, Latency (us), Power (mW), LUT/BRAM Utilization

5. RESULTS AND DISCUSSION

The FPGA-based Spiking Neural Network (SNN)
accelerator, suggested in the paper, was compared
with two baselines representative of two different
benchmarks, including a TinyML-optimized
Convolutional Neural Network (CNN) ported to the
same FPGA platform and a biology-inspired, STDP-

trained SNN emulating the Loihi neuromorphic
chip at Intel. The metrics used in evaluation were
classification  accuracy, power  dissipation,
inference latency, and logic usage (LUT usage). As
demonstrated in the performance summary, the
CNN model had the best classification accuracy of
91.2%, just below the proposed FPGA SNN, 90.7%
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and that of the Loihi SNN, 89.4%. Yet, such slight
drawback of the accuracy is compensated by the
considerable increase of power and latency
delivered by FPGA SNN design. In particular, the
suggested accelerator had an inference power
consumption of only 126 mW and as such this
required a power reduction of 60 percent
compared to the CNN baseline, and definitely
about 40 percent less power in comparison to the
SNN based on Loihi. A huge decrease is explained
by the use of the event-driven computation, clock-
gating clock-gating processes, and the fixed-point
arithmetic in the FPGA version of the project.

Regarding latency the FPGA SNN was not only 35

Other apps like wearable requites this low latency
to be real-time responsive, especially time-critical
functions like detecting cardiac anomalies or
controlling using gestures. Moreover, the design
logic exploitation was also quite effective since the
application needs 9,300 LUTs, which is less than
60 percent of the capabilities of the Artix-7 FPGA.
This is a large margin to allow incorporating other
modules like sensor interfaces, preprocessing
modules or even wireless transmission modules. A
high energy efficiency, a low latency, and the small
resource footprint make the proposed architecture
well suited to edge-Al on wearable applications,
where real-time operation is necessary in the

percent quicker than the Loihi model, but almost presence of stringent power and area
thrice as fast as the CNN-based model, with an  requirements.
average inference latency of only 89 microseconds.
CNN (TinyML)
Power (mW) —— SNN (Loihi)
—— Proposed FPGA SNN
Latency( Aceuracy (%)
LUT Usage
Figure 6. Radar Plot of Model Performance Metrics
Table 2. Comparison of SNN and CNN Model Performance Metrics
Model Accuracy (%) Power (mW) | Latency LUT Usage
(Aps)
CNN (TinyML) 91.2 320 273 19000
SNN (Loihi) 89.4 210 130 N/A
Proposed FPGA | 90.7 126 89 9300
SNN
6. CONCLUSION Leaky Integrate-and-Fire (LIF) neurons, and
The proposed work introduces an FPGA-based through a well-conceived architecture,

Spiking Neural Network (SNN) accelerator that
supports edge-Al applications used in wearable
devices that solve the main problems of power
consumption, real-time reaction, and hardware
size. The proposed implementation, by utilizing the
event-driven and temporally sparse nature of

Electronics, Communications, and Computing Summit | Jan - Mar 2025

demonstrates strong promises of a substantial use
of space, latency, and energy (compared to classic
CNN-based models and neuromorphic
architectures such as Loihi) due to its hardware
implementation running on an Xilinx Artix-7 FPGA.
The system also showed excellent results and
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performed well on real-world biomedical datasets
including DVS Gesture and PhysioNet ECG, but
used less than 60 per cent of the available logic
resources, allowing it to be combined with and
attached to other sensor interfaces and
communications modules. These data validates the
effectiveness of implementing neuromorphic
processing paradigms on an always-on, real-time
wearable. In the future, there also exist some
opportunities to improve the design, combining
learning mechanisms on the online platform via
STDP, thus allowing adaptive behavior and
personalization in wearables, multi-modal sensor
fusion, e.g.,, ECG and IMU signals, to allow richer
context-aware inference, and final porting of the
design to ASICs to eke out ultra-low-power silicon
implementations that can be used in a commercial
wearable  SoC.  Therefore, the proposed
architecture can serve as an effective foundation of
wearable intelligence in the next generation and
biologically motivated neural computation that
consume little energy.
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