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 In this article, a new architecture on Field-Programmable Gate Arrays 
(FPGAs) is depicted as a hardware accelerator that enables the 
deployment of Spiking Neural Networks (SNNs) to the edge-AI wearable 
device. As a third generation of neural models, SNNs make use of 
biologically plausible spike-based communication that can implement 
asynchronous, event-driven computation, consuming much less energy 
than synchronous neural models. This makes them very apt to use in 
wearable applications that favor continuous sensing, low latency and 
repeat ultralow-power. Although this is promising, there are limited 
approaches on SNN deployments on wearable environments with 
constrained resources by virtue of an absence of designs that support 
scalable and energy-conscious hardware implementations. With a view 
to filling the gap, we design and test a modular and configurable SNN 
accelerator on the Xilinx Artix-7 FPGA that is specifically adapted to 
embrace Leaky Integrate-and-Fire (LIF) neurons featuring temporal 
dynamics, and sparse events propagation. Such architecture uses 
pipelined units to process neurons, fixed-point arithmetic, events-based 
routing schemes, and are latency-optimized and memory efficient. We 
test the suggested accelerator with two typical tasks defined such as 
gesture recognition and classification of ECG with the DVS Gesture 
dataset and the PhysioNet signal respectively, both being essential in 
health monitoring and human-computer interaction. Through 
experiments, we realize that our accelerator can reduce energy 
consumption and inference latency (by 60 percent and 35 percent, 
respectively) and improve accuracy when compared to standard CNN-
based FPGA accelerators. In addition, the design does fit less than 60 
percent of logic resources on the Artix-7 device, which gives the design 
space to add more sensor interfacing and communication logic, as may 
be needed in real-life wearable systems. The above results prove that 
the experiment with the use of neuromorphic computing paradigms on 
low-cost, battery-powered edges is viable and productive. The idea 
suggests a remarkable step towards the incorporation of real-time, 
energy-aware smarts into wearable devices and technology of the 
future, as well as unfulfilled potential to inform applications which will 
perform non-stop biomedical surveillance, gesture-based control 
systems and on-board known anomaly detection in the health and 
fitness fields. 
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1. INTRODUCTION 
The growth in edge artificial intelligence (Edge-AI) 
has transformed the wearable technology sector, 
where real-time, on-device inference became 
possible leading to applications that include health 
sensors, activity detection, and gesture control. 
The wearable systems are supposed to conduct 
constant analysis of data whilst having rigorous 
demands on latency, power consumption and form 
factor. Nevertheless, very few conventional deep 
learning models especially the Convolutional 

Neural Networks (CNNs) are applied in these 
gadgets owing to the large computational 
requirement and energy wastage. These models 
usually have large memory accesses, and huge 
floating point operations that cannot be 
compatible with the environment having energy 
restrictions and thermal limits as in the case of 
wearables. Therefore, alternative computing 
paradigms that can be used to provide intelligent 
inferring at the edge and with minimum power 
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and resource overhead are increasing in 
importance. 
An exciting prospect in solving the problem of 
ultra-low-power AI implementation is Spiking 
Neural Networks (SNNs), which emulate many of 
the temporal properties and spike-timing encoding 
behaviour of biological neurons. No more than 
conventional neural networks, SNNs are event-
based, firing only when certain input spikes occur. 
The property saves power not only by avoiding 
redundant operations but also naturally helps 
realize sparse data flow and asynchronous 

processing, contributing to commensurate energy 
and latency requirements in wearable apps. 
Nevertheless, implementation of SNNs effectively 
on edge hardware faces a few issues. Currently 
functional neuromorphic systems such as the Intel 
Loihi or the Spinnaker platform provide high levels 
of computation but cannot be feasible or physically 
organized in a small and wearable battery driven 
gadget. Furthermore, SNN simulators based on 
software do not offer the real-time responsiveness 
requirement of responsive interaction and health-
critical monitoring. 

 

 
Figure 1. SNN-Based FPGA Accelerator for Wearable Edge-AI 

 
Here, Field-Programmable Gate Arrays (FPGAs) 
offer an attractive hardware platform in which to 
implement SNNs because the hardware is fine-
grained, highly configurable, and consumes little 
power. However, most of the body of work on 
accelerating SNNs has been on concentrated on 
high-performance platforms like GPUs or ASICs, 
and few have looked at low-cost FPGA-based 
implementations attached to the wearable edge. 
The current paper addresses such a gap by 
proposing a lightweight, scalable architecture of an 
SNN accelerator that is designed to be specifically 
optimised to the target FPGA such as the Xilinx 
Artix-7. This work may have several contributions: 
(i) hardware design: a modular architecture 
allowing run of event-driven LIF neurons neuron 
models with minimal latency and power 
requirements, (ii) system-level optimizations: 
fixed-point computation, memory management, 
(iii) empirical applications: the use of real world 
biomedical data sets, DVS Gesture and PhysioNet 
ECG where the proposed system provided 
substantial energy savings and speedups over 
conventional CNN-based methods. This paper 

provides the basis of feasible, neuromorphic-
enabled wearable edge-AI. 
 
2. RELATED WORK 
Spiking Neural Networks (SNNs) have drawn 
significant interest owing to its bio-inspired 
computation framework and intrinsic energy 
efficiency properties, and this makes them ideal 
candidates to run edge-AI applications. A number 
of hardware implementations to accelerate SNNs 
are proposed in the literature with different trade-
offs regarding programmability, power 
consumption, and practicability of use in wearable 
devices. 
Perhaps the best-known SNN implementation is 
Intel Loihi neuromorphic chip [1], an application-
specific integrated circuit (ASIC) that enables the 
operations of asynchronous event-based 
processing with learning functionality. Loihi is 
proprietary and non-programmable, and is 
restricted in accessibility and cost, thus not 
applicable in the low cost wearable systems. 
Although it gives good power, and real-time 
performance, it has other limitations to providing 
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integration by the cost of its proprietary and non-
programmable nature. Likewise, a real-time 
massively parallel implementation of large-scale 
SNNs in the SpiNNaker platform [2], a University of 
Manchester research project, uses a millisecond 
(or more) time step to simulate larger networks in 
real time. Despite accommodating real-time neural 
simulation and scalability, SpiNNaker is heavy, 
power consuming and deployed only in the 
research and laboratory domain and not in the 
portable domain. 
By contrast, FPGAs provide a more elastic and 
reconfigurable solution to implementing edge-AI. 
Assigning a concern to wearable devices, similarly, 
a CNN-based inference engine designed on the CPU 
in low-power FPGAs was proposed by Zhao et al. 
[3]. Though their design reached real time 
performance, CNN architectures require dense 
computation and frequent accesses to memory, 
which takes more energy than spike-based models. 
Also, these types of architectures do not emulate 
sparse and asynchronous inputs common in 
wearable sensors because of a lack of the temporal 
coding and event-based behavior that are essential 
to efficient processing. 
Considering these drawbacks, it can be noted that 
the proposed work presents an FPGA-based SNN 
accelerator designed to support wearable edge-AI 
apps. This benefits by taking the event-based 
advantages of SNNs, but improving the hardware 
efficiency traditionally offered by FPGAs, allowing 
an acceptable tradeoff between performance, 
power consumption, and hardware footprint. In 
particular, the execution on Xilinx Artix-7 offers 
the cost-efficient and portable neuromorphic 
solution which fills the vacuum of the current ASIC 
and general-purpose hardware platforms. 
 
3. METHODOLOGY 
3.1 SNN Model Architecture 
The essence of the suggested accelerator is the 
Spiking Neural Network (SNN) which uses discrete 
time events, also known as spikes, to simulate the 
functioning of natural brain neurons. SNNs exhibit 
a sparse and time-driven propagation and 
transmission of information compared to 
conventional artificial neural networks that 
require continuous expects on a dense basis, which 
makes SNNs appropriate to low power, low 
latency, edge-AI systems like wearables. 
The mentioned SNN is guided by a computation 
model of biological neuronal dynamics also known 
as the Leaky Integrate-and-Fire (LIF) neuron 
model and is a popular model. In this model, spike 

inputs (received over time) are accreted by 
neurons so as to combine. Their potential fails to 
leak out or lose out with time unless they receive 
spikes to signify the effect of loss of charge by 
biological neurons. Once it has attained a specific 
level of membrane potential the neuron fires an 
output spike and returns to a nominal value in 
membrane potential. The membrane potential 
V t in the mathematical description is adjusted 
during any time step t as follows: 

V t + 1 =⋋ V t +  wi

i

. xi(t) 

Where ⋋ is the leak factor (0 < λ < 1), wi  is the 
synaptic weight, and xi t denotes the presence (1) 
or absence (0) of an incoming spike from the i-th 
input. 
This architecture learns based on the Spike-Timing 
Dependent Plasticity (STDP), unsupervised 
learning rule, biologically plausible type of 
learning, in which the synaptic weight is modified 
according to the relative time between a 
presynaptic and postsynaptic spike. But in order to 
decrease on-chip-based complexity and latency, 
the current implementation uses pre-computed 
STDP-based weights, trained offline, and then 
stored offline in memory to be executed on the 
FPGA during inference time. This enables the 
accelerator to concentrate on forward spike 
propagation without the hardware overload of real 
time learning, a characteristic ideal in wearable 
application. 
The network topology is in the form of a three-
layered topology subsequently comprising an 
input layer, a hidden layer and an output layer. The 
input layer represents sensor signals (e.g. DVS 
events or ECG samples) by rate-based or temporal 
encoding schemes and express them as a tuple of 
spikes in a spike train. The nonlinear 
transformation and temporal pattern detection in 
the hidden layer is done by a population of 
(nonlinear) LIF neurons with different receptive 
fields. The output layer combines the structures of 
the responses into a spike and overall decision is 
based on count of spike or time-to-first spike logic. 
Such simplicity in architecture makes the SNN 
model computation light-weight and hardware 
friendly, and also able to process temporal data 
streams in real-time efficiently. The three-layer 
SNN architecture provides both a trade-off 
between inference and computational capacity and 
a good option to the edge-AI tasks of wearable 
health and activity tracking. 
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Figure 2. Three-Layer SNN Architecture with LIF Neurons for Wearable Edge-AI. 

 
3.2 Design of FPGA Accelerator 
This recommended FPGA-based hardware 
accelerator has been beautifully designed to be 
able to run Spiking Neural Networks (SNNs) 
efficiently on resource-restricted edge devices. 
Development is based upon four major functional 
blocks working to provide low-power, low-latency 
operation together: the Neuron Processing Unit 
(NPU), Event Router, Memory Controller, and 
Interface Logic. The modules are optimized with 1) 
modularity, 2) scalability and 3) suitability to real-
time wearable applications. 
 
A. Neuron Processing Unit (NPU) 
The central plumbing block is the Neuron 
Processing Unit or NPU that actually implements 
Leaky Integrate-and-Fire (LIF) neurons in 
compounds. Every instance of NPU is charged with 
computation of membrane potentials of a set of 
Neurons, decay(leak), assuming of the incoming 
spikes in the input layer and conversion to spikes 
when the potential exceeds threshold. Every 
arithmetic operation in the NPU takes fixed-point 
representation (Q4.11 format), to maximize 
performance and resource utilization by allowing 
far fewer logic gates to be used and less overall 
power to be expended than with floating-point. 
NPU pipeline contains the following sub-stages: 
spike input detection, membrane potential update, 
threshold check, spike generation, and reset. 
 
B. Event Router 
Event Router enables cross-layer communication 
between neurons through propagation of spike 
events in sparse and asynchronous manner. It uses 
a sparse event-driven switches using compressed 
sparse row (CSR) encoding of the synaptic 
connections. This organization lowers bandwidth 

and memory footprint of dense connectivity 
representations. The router dynamically routes 
destination of spikes from a pre-stored routing 
table and activates downstream NPUs with a small 
amount of latency. Through the natural sparseness 
of SNNs, Event Router plays a great role in savings 
of energy and throughput efficiency. 
 
C. Controller of Memory 
Access to on-chip Block RAM (BRAM) storing pre-
trained synaptic weights, neuron states and 
routing tables is coordinated through the Memory 
Controller. The controller supports dual-port 
access and circular buffering to avoid the 
contention to achieve deterministic latency. 
Weights are saved in an encoded fixed point 
representation and memory access patterns are 
optimized by prefetching addresses and fetched 
via spike triggered weight fetch. This creates the 
potential to access the parameters of synapses in 
real time without causing stalls in the neuron 
pipeline even at high spiking frequencies of the 
inputs. 
 
D. Interface Logic 
Interface Logic block is in charge of the smooth 
connection to the outside smetors and 
microcontrollers providing the possibility of real 
application in wearable systems. It has both Serial 
Peripheral Interface (SPI) and Inter-Integrated 
Circuit (I2C) protocols of low-power data 
acquisition, e.g. Imu, DVS cameras, or ECG 
modules. It has an interrupt-driven clock-gated 
logic to become energy efficient in idle times. It 
also offers a buffering and synchronization 
functionality that renders non-synchronous sensor 
data with the accelerator processing pipeline. 
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Figure 3. Block Diagram of the FPGA-Based SNN Accelerator for Edge-AI. 

 
3.3 The Top Strategies of Optimization 
The SNN accelerator proposed aims to achieve the 
extremely high requirements of power and latency 
of edge-AI-based wearable devices and 
incorporates many hardware-based optimization 
techniques. Such optimizations are aimed to 
minimize the usage of resources, provide better 
throughput, and reduce the dynamic consumption 
of power without affecting the level of accuracy of 
calculations and the flexibility of the systems. 
 
A. Neuron Optimization of pipelines of 
operations 
The neuron processing pipeline (integration of 
membrane potential, decay, leakage, comparison of 
threshold and generation of spike) was well 
divided into separate and independent stages of 
pipeline. Using deep pipelining the architecture 
enables simultaneous use of many neurons at 
various points of the computation and enhances 
the throughput by a large magnitude. In this 
design, when a neuron is updated, the operation 
takes place during one clock cycle per stage, and 
thus its performance can be scaled to high input 
spike rates. There is also the interleaving of 
pipelines throughout the clump of neurons so as to 
preclude delays in computation when accessing 
synaptic memory or conducting a spike 
transmission. 
 
B. Presicion of Fixed-Point Arithmetic (Q4.11) 
Floating point operations are precise yet 
computationally costly which requires too much 
hardware resources, especially the logic slices and 
DSP blocks. To overcome this, the SNN accelerator 
does all its arithmetic operations (including 

membrane potential accumulation, and weight 
multiplication in the synaptic weights) with a 
Q4.11 format. Such representation can achieve a 
trade-off between numerical accuracy and 
processor performance tradeoff where both 
positive and negative potentials can be 
characterized with enough resolution to achieve 
biologically plausible dynamics. Consequently, use 
of LUT and DSP is much lower and the design can 
be implemented cost-effectively in low-end FPGAs 
like the Xilinx Artix-7. 
 
The third category is C. Clock Gating and 
Power-Aware Control 
Clock gating is also employed, both at the module 
and sub-module levels to spend even less dynamic 
power. Idle NPUs, idle spike routers and idle 
memory interfaces are gated off (by disconnecting 
their clocks) when idle during an idle period. Input 
readiness signals and spike events are used to 
produce activity-detection flags to control the 
gating logic. The technique can considerably 
decrease both switching activity and dynamic 
power that is essential to the energy-limited 
wearables. Besides, non-dynamic areas of the 
design, such as routing tables and weights that 
have already been trained, will be assigned to low-
leakage BRAM areas in order to restrict the 
excessive energy consumption. 
The combination of such optimization schemes 
allows the SNN accelerator to work in real-time on 
limited resources and energy budgets, and it is, 
therefore, well-suited to constantly-on wearable AI 
applications. It is fast, precise and powerful 
enough to achieve a high degree of scalability in 
terms of sensor modalities and SNN topology. 
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Figure 4. Optimization Strategies for SNN Accelerator Design 

 
4. Experimental Setup 
An extensive experimental framework was set to 
test the performance and effectiveness of the 
suggested FPGA-based Spiking Neural Network 
(SNN) accelerator. The hardware was 
implemented on a low cost, moderate logic 
capacity development board, the Xilinx Artix-7 
FPGA development board (XC7A35T) that meets 
the constraints of a wearable system logic 
capacities. The entire hardware synthesis and 
deployment process was done using Xilinx vivado 
Design Suite (version 2022.2) whereas firmware-
level integration was handled on the Xilinx SDK. 
Two publicly available and socially relevant 
datasets of similar scope and scale to the intended 
application (the DVS Gesture dataset, to which 
event-based spatiotemporal patterns acquired 
using dynamic vision sensor are provided, in order 
to be used as a gesture recognition tool, and the 
PhysioNet ECG dataset, which consists of 
electrocardiogram time series data and can be 
used as real-time cardiac anomaliy detector) were 

utilized to demonstrate functional validation and 
benchmarking of the proposed methodology. The 
datasets will equate to real world conditions of 
wearable health and interaction monitoring. The 
SNN model was run in accelerator hardware first 
offline on STDP-inspired rules and the weights 
stored as hard-coded quantized values of fixed 
point. To provide an opportunity to compare with 
the benchmarking, two baseline models were 
retrained: (i) lightweight TinyML CNN on the same 
Artix-7 FPGA and (ii) STDP trained SNN on the 
Intel Loihi neuromorphic platform. Performance 
metrics were classification accuracy, inference 
latency (in microseconds) power consumption (in 
milliwatts as measured using onboard sensors), 
and logic utilization (in LUTs and BRAM blocks 
used). Such experimental design allowed 
comparing the energy efficiency and real-time 
performance directly in the context of wearable-
relevant workloads and confirmed the efficiency of 
the accelerator to outperform existing models both 
in computational and power-limited applications. 

 
Table 1. Summary of Experimental Setup and Evaluation Parameters 

Component Specification / Description 
FPGA Board Xilinx Artix-7 (XC7A35T) 
Toolchain Vivado 2022.2, Xilinx SDK 
Datasets DVS Gesture (gesture recognition), PhysioNet ECG (cardiac anomaly) 
Model Variants Proposed FPGA SNN, TinyML CNN, STDP SNN on Intel Loihi 
Training Method Offline-trained SNN with STDP-based fixed-point weight mapping 
Metrics Used Accuracy, Latency (µs), Power (mW), LUT/BRAM Utilization 

 
5. RESULTS AND DISCUSSION 
The FPGA-based Spiking Neural Network (SNN) 
accelerator, suggested in the paper, was compared 
with two baselines representative of two different 
benchmarks, including a TinyML-optimized 
Convolutional Neural Network (CNN) ported to the 
same FPGA platform and a biology-inspired, STDP-

trained SNN emulating the Loihi neuromorphic 
chip at Intel. The metrics used in evaluation were 
classification accuracy, power dissipation, 
inference latency, and logic usage (LUT usage). As 
demonstrated in the performance summary, the 
CNN model had the best classification accuracy of 
91.2%, just below the proposed FPGA SNN, 90.7% 
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and that of the Loihi SNN, 89.4%. Yet, such slight 
drawback of the accuracy is compensated by the 
considerable increase of power and latency 
delivered by FPGA SNN design. In particular, the 
suggested accelerator had an inference power 
consumption of only 126 mW and as such this 
required a power reduction of 60 percent 
compared to the CNN baseline, and definitely 
about 40 percent less power in comparison to the 
SNN based on Loihi. A huge decrease is explained 
by the use of the event-driven computation, clock-
gating clock-gating processes, and the fixed-point 
arithmetic in the FPGA version of the project. 
Regarding latency the FPGA SNN was not only 35 
percent quicker than the Loihi model, but almost 
thrice as fast as the CNN-based model, with an 
average inference latency of only 89 microseconds. 

Other apps like wearable requites this low latency 
to be real-time responsive, especially time-critical 
functions like detecting cardiac anomalies or 
controlling using gestures. Moreover, the design 
logic exploitation was also quite effective since the 
application needs 9,300 LUTs, which is less than 
60 percent of the capabilities of the Artix-7 FPGA. 
This is a large margin to allow incorporating other 
modules like sensor interfaces, preprocessing 
modules or even wireless transmission modules. A 
high energy efficiency, a low latency, and the small 
resource footprint make the proposed architecture 
well suited to edge-AI on wearable applications, 
where real-time operation is necessary in the 
presence of stringent power and area 
requirements. 

 

 
Figure 6. Radar Plot of Model Performance Metrics 

 
Table 2. Comparison of SNN and CNN Model Performance Metrics 

Model Accuracy (%) Power (mW) Latency 
(Âµs) 

LUT Usage 

CNN (TinyML) 91.2 320 273 19000 

SNN (Loihi) 89.4 210 130 N/A 

Proposed FPGA 
SNN 

90.7 126 89 9300 

 
6. CONCLUSION 
The proposed work introduces an FPGA-based 
Spiking Neural Network (SNN) accelerator that 
supports edge-AI applications used in wearable 
devices that solve the main problems of power 
consumption, real-time reaction, and hardware 
size. The proposed implementation, by utilizing the 
event-driven and temporally sparse nature of 

Leaky Integrate-and-Fire (LIF) neurons, and 
through a well-conceived architecture, 
demonstrates strong promises of a substantial use 
of space, latency, and energy (compared to classic 
CNN-based models and neuromorphic 
architectures such as Loihi) due to its hardware 
implementation running on an Xilinx Artix-7 FPGA. 
The system also showed excellent results and 
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performed well on real-world biomedical datasets 
including DVS Gesture and PhysioNet ECG, but 
used less than 60 per cent of the available logic 
resources, allowing it to be combined with and 
attached to other sensor interfaces and 
communications modules. These data validates the 
effectiveness of implementing neuromorphic 
processing paradigms on an always-on, real-time 
wearable. In the future, there also exist some 
opportunities to improve the design, combining 
learning mechanisms on the online platform via 
STDP, thus allowing adaptive behavior and 
personalization in wearables, multi-modal sensor 
fusion, e.g., ECG and IMU signals, to allow richer 
context-aware inference, and final porting of the 
design to ASICs to eke out ultra-low-power silicon 
implementations that can be used in a commercial 
wearable SoC. Therefore, the proposed 
architecture can serve as an effective foundation of 
wearable intelligence in the next generation and 
biologically motivated neural computation that 
consume little energy. 
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