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 Industrial Internet of Things (IIoT) is reshaping the production line and 
infrastructure-grade applications by making their operations smart 
using distributed sensor networks and embedded computing to realize 
intelligent automation, real-time analytics, and predictive maintenance. 
But with machine learning, it is becoming one of the components in such 
systems, and the security of the sensitive data used in the operation 
becomes of vital necessity. Federated Learning (FL) has been suggested 
as an effective method to conduct collaborative training of models on 
distant IIoT devices devoid of centralization of uncooked information, 
which thus retains local confidentiality. Nevertheless, this does not 
eliminate the privacy risks models face, including model inversion and 
gradient leakage, which are still a threat to most conventional FL 
systems, and in adversarial contexts. In order to bridge those 
vulnerabilities, this paper proposes a new privacy-preserving FL design 
that incorporates the Secure Multi-Party Computation (SMPC) into the 
model aggregate process. In the suggested framework, many IIoT nodes 
can jointly compute the encrypted model update using additive secret 
sharing scheme to achieve the effect that neither the node nor the 
aggregator can access to the raw update or the proprietary data. This 
solves them specifically towards low-power, resource-constrained IIoT 
edge devices and, to guarantee that they can be computed in such a low-
resource environment, applies optimization techniques including model 
quantization and lightweight cryptographic operations. To compare the 
system, we test it on several industrial datasets, such as Industry-
MNIST, UCI Gas Sensor Array, and NASA C-MAPSS and observe the 
performance by factors such as model accuracy, system latency, 
communication overhead, and data leakage attack resilience. As results 
in our experiments demonstrate, our SMPC-enhanced FL system 
provides competitive accuracy levels with less than 1 percent accuracy 
loss compared to regular FL whilst offering much better privacy 
guarantees and preserving the ability to perform inference within real-
time. In addition, the framework can easily be scaled to different 
numbers of IIoT nodes and can tolerate node dropout and malicious 
bahavior. The study offers a safe, effective, and expandable platform of 
implementing collaborative AI models in IIoTs, which opens the path 
toward reliable industrial intelligence without negatively affecting data 
security and the functioning of the system. 
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1. INTRODUCTION 
The emergent Industrial Internet of Things (IIoT) 
development has transformed the conventional 
manufacturing and industrial activities due to its 
ability to provide cohesive communication, instant 
sight, and data analytics. IIoT ecosystems consist of 
a wide variety of interrelated edge devices, such as 
sensors, programmable logic controllers (PLCs), 
actuators, and embedded systems that are 
constantly creating massive amounts of data 
regarding the process of running a business. 
Machine Learning (ML) has shown the 
unprecedented possibilities of utilizing this data to 

such applications as predictive maintenance, 
anomaly detection, quality control, and adaptive 
process optimization. Nonetheless, the use of 
centralized ML solutions means a significant threat 
to the privacy and safety of data and business 
activities. 
The more conventional methods of centralized 
training involve gathering information on several 
IIoT nodes that are combined into a single cloud or 
server. Not only does this breach the principle of 
sovereignty of data and industrial requirements 
governing compliance, but this puts sensitive 
proprietary data at an elevated attack plane. 
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Besides, industrial information regularly includes 
information that is specific, safety-related and, in 
the event of leakage, may result in competitive 
disadvantage or, even, sabotage. To address those 
concerns, Federated Learning (FL) has grown as 
one of the paradigms of decentralized machine 
learning, allowing training collective models on 
decentralized devices in the edge without sending 
raw data. Every device runs a local model with its 
data and provides only model updates to a central 
aggregator to train a global model. 

FL on its own is not immune to privacy threats, 
however as promising as it sounds. The close-by 
rivalries can deny the gradients or subsets of the 
models to conduct the demonstration of 
membership, model inversion, or property-
inversion assaults to disturb the secure nature of 
the local records. Moreover, in traditional FL the 
aggregation procedure presupposes a central 
trusted server that might not be possible or safe in 
hostile industrial applications. 

 

 
Figure 1. SMPC-Enabled Federated Learning Architecture for IIoT 

 
In solving these dire security and privacy 
vulnerabilities, the paper suggests an architecture 
that uses lightweight Inner Friction Federated 
Learning leveraged by Secure Multi-Party 
Computation (SMPC). SMPC is a cryptographic 
primitives that enable several parties to compute 
over their inputs in a joint manner whilst 
preserving their inputs secrecy. Having the SMPC 
process incorporated into model aggregation of FL, 
we prevent any of the parties, among which lies an 
aggregator, to obtain the information on the 
individual model update and, therefore, the use of 
a trusted third party is no longer needed. The 
offered system applies additive secret sharing to 
divide local model gradients into a number of 
shares and distributes them across participants to 
securely combine. 
The architecture is specifically IIoT compliant in 
that edge devices are commonly limited in terms of 
processing power, memory and bandwidth. In our 
framework the cryptographic operations and 
model communication overhead are optimized to 

result in minimal latency and high scale. The 
practical efficiency of such a solution is also 
demonstrated through an extensive number of 
experiments with real-world industrial datasets, 
compared with traditional FL and FL with the 
integration of differential privacy (DP). 
The findings indicate that our SMPC-powered FL 
framework can achieve high model accuracy and 
yet be much more resistant to privacy attacks and 
facilitate decentralized collaboration among IIoT 
nodes, since the latter is much more secure. The 
objective of this work will be to perform federated 
intelligence studies to securely deploy them into 
industrial systems and ensure privacy-preserving 
AI into such mission-critical tasks. 
 
2. RELATED WORK 
2.1 Federated Learning Industrial IoT 
Federated Learning (FL) represents an interesting 
paradigm that can be used to enable decentralized 
intelligence in IIoT-based applications, given that 
privacy of information and low-latency metrics are 
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essential. [1]Introduced a survey of FL, which is 
projected to revolutionize edge intelligence 
through collaborative learning, which does not 
sacrifice locality. Nevertheless, they accepted that 
there are open possible problems in securing 
model updates against the leakage attacks. 
[2]Precisely focused on the use of the FL in 
heterogeneous industrial type, and suggested 
optimization approaches that could solve the 
heterogeneity of statistics and systems. Although 
these contributions are quite important, they fail 
to incorporate privacy-preserving cryptographic 
protocols like Secure Multi-Party Computation 
(SMPC), necessary in adversarial industrial 
settings. 
 
2.2 Secure Multi-Party Computation of 
Distributed AI 
The secure collaborative learning process has 
extensively used SMPC to help prevent information 
leakage by means of models aggregation. 
[3]Formulated a secure aggregation mechanism of 
FL that employs SMPC-based secret sharing in 
order to guarantee the secrecy of the individual 
client updates throughout the training process. 
Their resolution was applied in big mobile-scale 
settings, especially in case of the Gboard of Google. 
In much the same vein, Mohassel and [4] proposed 
a system, SecureML, wherein SMPC techniques are 
used to realise privacy-preserving machine 
learning, and to reach accuracy as well as 
cryptographic security. Nevertheless, they are 
mainly developed to support consumer-grade 
systems and are resource-intensive, which does 
not best fit into the IIoT systems with limited 
power and computing abilities. 
 
2.3 The IIoT Security issues 
The IIoT platform poses special security issues 
such as device heterogeneity, physical 
vulnerabilities and insecure channels of 
interaction. [5]Provided a comprehensive survey 
of the many security, privacy, and trust-related 
challenges in IoT and how such challenges are not 
addressed satisfactorily by traditional security 
solutions in the industrial environments. They 
promoted the use of lighter cryptographic services 
and distributed models. These results highlight the 
need to integrate privacy-preserving practices, 
including SMPC, to the FL processes targeted at 
IIoT systems with high resources utilization 
requirements. 
 

2.4 Gap in the research and contribution 
Although current literatures have addressed either 
FL or SMPC in a distributed AI system separately, 
limited research on such a topic has been 
performed on integrating SMPC into specific FL to 
implement in IIoT environments considering its 
limitation and risks. The paper will fill this gap 
with a new FL architecture that aims to be an 
optimized implementation of global FL in terms of 
latency and low-power adoption to industrial 
machines. We are providing a system that not only 
maintains the privacy, but also maintains the high 
model accuracy, and robustness against 
adversarial attacks on the IIoT deployments in a 
scalable and bad weight way at the same time. 
 
3. System Architecture 
3.1 Overview 
The secure or secure federated learning 
architecture proposed in the Industrial IoT setting 
is meant to accommodate decentralized training 
but with the ability to protect the privacy of data 
through cryptographic protection. The system 
consists of several IIoT edge nodes, SMPC-enabled 
aggregator (which could be centralized or 
decentralized), and such coordinating entity called 
as model server. Every edge node is an industrial 
endpoint: a sensor, a robotic arm or PLC controller 
that ingests data locally and trains a machine 
learning model on its own. Rather than sending 
unrefined data or gradients, every node performs 
cryptographic processing to maintain the privacy 
of data. The aggregate model updates (e.g., weights 
or gradients, which are trained locally), are 
operated upon by the SMPC Protocol Module to do 
additive secret sharing and then the encrypted 
shares are securely transmitted to any peer nodes 
or to the aggregator. The aggregator node(s) 
performs the task of creating the global model 
update based on encrypted-shares received by it, 
without accessing the information of any one party 
or their model update. This promises privacy 
preserving as well as tamper-resistant aggregation 
process. Alternatively, there is the possibility of 
having an orchestrator, that is, a model server, 
which coordinates training rounds, controls which 
nodes participate, and distributes the newly 
updated global model to the participants. The 
system enables synchronous and asynchronous 
modes of federated training, allowing the dynamic 
IIoT networks the scalability and robustness 
needed. 
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Figure 2. Block Diagram of SMPC-Enabled Federated Learning Architecture for IIoT 

 
3.2 Integration of SMPC Protocol 
In order to make model aggregation perform in a 
safe and non-leaky way, the architecture 
incorporates the Secure Multi-Party Computation 
(SMPC) relying on an additive secret sharing 
scheme based on the SPDZ (Speedz) protocol. In 
the scheme, each node contributing to this scheme 
is split up to generate various random additive 
shares of the local model update to send those 
shares to the aggregates and / or the peer 
participants. Such shares need to be added 
together to build the initial gradient but do not 
betray their constituents to anyone. The 
specialization of the SMPC implementation to the 
IIoT setting is by minimizing cryptographic 
operations and communications overhead and 
allowing it to execute even on low-power edge 

devices. Moreover, the framework allows process 
efficient and scalable secure aggregation of a high 
number of industrial nodes, completing this task 
using pre-computed random values and batch 
processing of shares. The SPDZ-based protocol is 
secure under semi-honest adversaries, and it 
ensures that in case a set of participants acts in 
collusion, they are not able to gather any 
knowledge about model update of another 
participant. This secure aggregation property 
eliminates the requirement of a trusted central 
server hence making the learning process fully 
decentralized and a single point of failure is 
eliminated. Accordingly, the incorporation of SMPC 
is the building block of the suggested architecture 
that allows privacy-preserving collaborative 
learning at the edge of industrial networks. 

 

 
Figure 3. Secure Gradient Aggregation via SMPC Using Additive Secret Sharing in IIoT Federated 

Learning 
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4. METHODOLOGY 
4.1 Problem Formulation 
Following a Federated Learning (FL) framework 
modified to the Industrial Internet of Things (IIoT) 
context, we will think of a system with N spatially 
distributed IIoT edge nodes (e.g., sensors, 
actuators, controllers) having their own local data 
set, 𝐷𝑖  with index 𝑖 ∈  1,2, … , 𝑁 These databases 
are proprietary with sensitive operation data that 
could be unique to individual industrial device or 
process line. The joint goal is to train a single 
machine learning model globally,𝑓(. ; 𝑤) 
parameterized by weight vector w generalizing 
across all the distributed settings that does not 
necessitate any of the nodes to relinquish access to 
its raw data and intermediate computations. 
The training mechanism associated with 
minimization of a worldwide loss feature that 
measures the total model error of each of 
participating nodes. This is mathematically 
summarised as: 

min
𝑤

 ℒ 𝑓 𝐷𝑖 ; 𝑤  

𝑁

𝑖=1

 

In this case ℒ .  is the task-specific loss (e.g. cross-
entropy in the case of classification or mean 
squared error in the case of regression) and 
𝑓(𝐷𝑖 ; 𝑤)represents the prediction on dataset 𝐷𝑖by 
this model using the current weights w. The 

outstanding question is how to do this 
optimization in a cooperative way, without giving 
any knowledge about the individual datasets 𝐷𝑖  or 
the local gradients computed as part of training. 
The direct transfer of gradients or update weights 
(unprovided with raw data) is extremely 
vulnerable to exposure and invasion of 
confidentiality, as the bomber can regurgitate 
latent characteristics of inversion of the model or 
membership inference. 
In order to achieve privacy and at the same time 
facilitate distributed optimization, our solution 
integrates Secure Multi-Party Computation (SMPC) 
at the aggregation step. Gradients (or weights) are 
not transmitted as plaintext, but rather the 
gradient update is locally computed at each edge 
node∇ℒ(𝑓 𝐷𝑖 ; 𝑤 ), encrypted under an additive 
secret sharing scheme, and randomized shares of 
the secret are sent to peer participants or an 
aggregator node. Then the global model is updated 
with respect to securely aggregated results so that 
the contribution of each node could not be 
revealed by another party. This would allow 
preserving the accuracy and convergence 
advantage of distributed stochastic gradient 
descent (SGD) but protect the confidentiality of the 
industrial data sources. 

 

 
Figure 4. Secure Federated Optimization Workflow Using SMPC in IIoT 

 
4.2 Secure aggregation 
The original model (i.e., database) is on a central 
aggregation node, and in classical federated 
learning (FL), some other amount of nodes send a 
model update (i.e., gradients or weight deltas) to 
the central aggregator in order to compute a 
weighted mean of the updates to update the global 
model. However, the privacy attacks can be 

applied, and raw gradients may include the 
knowledge about the underlying data. To 
overcome such a limitation, our system is based on 
secure aggregation, including Secure Multi-Party 
Computation (SMPC) that enables calculating a 
global change without exposing anyone to model 
any model of the respondent. 
Secure aggregation protocol works as follows: 
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1. Gradient Sharing via Secret Splitting:After 
completing a local training epoch, each edge 
node 𝑖 computes its gradient update ∆𝑤𝑖  
based on its private dataset 𝐷𝑖 . Instead of 
transmitting ∆𝑤𝑖  directly, the node performs 
additive secret sharing: the update is split 
into 𝑛 random shares, such that the sum of all 
shares reconstructs the original gradient. 
Mathematically, for each component of ∆𝑤𝑖  , 
the node generates random values 
𝑠𝑖 ,1 , 𝑠𝑖 ,2 , … , 𝑠𝑖 ,𝑛−1 , and sets 𝑠𝑖 ,𝑛 = ∆𝑤𝑖 −
 𝑠𝑖 ,𝑗

𝑛−1
𝑗=1 . This ensures that no single share 

reveals any information about the true 
update. 

2. Share Transmission:The generated shares 
 𝑠𝑖 ,1, 𝑠𝑖 ,2, … , 𝑠𝑖 ,𝑛  are securely transmitted to 

either: 
 A central aggregator, or 

 Peer nodes in a decentralized 
aggregation setting. Communication 
channels may use TLS or authenticated 
encryption to prevent eavesdropping 
or tampering during transmission. 

3. Secure Aggregation and Model Update:The 
aggregator node collects all shares from the 
participating nodes and performs element-
wise addition across all updates. Due to the 
additive property of secret sharing, the final 
aggregated sum: 

 ∆𝑤𝑖 =   𝑠𝑖 ,𝑗

𝑛

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1

 

Can be computed without ever revealing any 
individual ∆𝑤𝑖 . The global model is then 
updated using this aggregated result. 

 

 
Figure 5. SMPC-Based Secure Gradient Aggregation Process in Federated Learning 

 
4.3 IIoT optimization 
Limited computational power, memory capacity, 
and bandwidth are also typical of industrial IoT 
settings where resources allocated to edge devices 
are very scarce. Thus, to keep the suggested Secure 
Multi-Party Computation (SMPC)-enabled 
Federated learning construction working in such 
surroundings efficiently, huge architectural and 
algorithmic optimizations are needed. In this 
direction, we adopt model compression 
procedures such as quantization and sparsification 
to limit the size and complexity of both gradient 
compression and the number of operations that 
gradients have to go through during every training 
round that happens in the course of a federated 
training procedure. Quantization lowers the 
accuracy of model parameters (e.g. float32 to 
integer8), which dramatically reduces both the 
data being sent and the memory required to 
perform the computation. Scarification omits 
temporarily (and possibly permanently) some of 
the least meaningful gradients by filtering a 

threshold in terms of magnitude, thereby reducing 
the number of non-zero entries in the update 
vector to a minimum, and thereby reducing the 
optical and storage cost of communication. 
Beyond model-level compression we embrace the 
lightweight cryptographic libraries like PySyft, TF 
Encrypted or home-grown C-based SMPC modules, 
tailored toward embedded hardware. The 
assumption here is that these libraries will be able 
to perform secure sharing and aggregation 
functions with low cryptographic overhead, so that 
even low end systems like Raspberry Pi, Arduino-
compatible boards or old PLC software are feasible 
to share participation in secure federated training. 
Additionally, to guarantee the optimal convergence 
of the system in the presence of dynamic 
workloads and hardware variations; we propose 
an adaptive learning rate strategy, which 
adaptively resets learning rates of all edge nodes 
considering the balance between the local 
computation capability, convergence rate and 
network robustness. In this dynamic tuning 
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scheme, every device acts to its best without 
overwhelming its processor or the communication 
interface. 
All of these optimizations together mean that the 
following framework can be implemented in the 

highly constrained environments of the IIoT, with 
excellent privacy guarantees and relatively good 
model performance. This renders the system very 
applicable in real life industrial infrastructures 
where heterogeneity and scalability are essential. 

 
Table 1. Optimization Techniques for SMPC-FL in IIoT Edge Environments 

Optimization 
Technique 

Purpose IIoT Benefit 

Quantization Reduces precision of model 
parameters (e.g., 32-bit to 8-bit) 

Minimizes memory footprint 
and lowers communication 
overhead 

Sparsification Retains only high-magnitude 
gradients during updates 

Decreases number of non-zero 
updates, reducing data 
transmission 

Lightweight Crypto 
Libraries 

Uses efficient SMPC 
implementations (e.g., PySyft, 
TF Encrypted) 

Enables secure operations on 
resource-constrained edge 
devices 

Adaptive Learning Rate Dynamically adjusts learning 
rate per device capabilities 

Improves training efficiency 
across heterogeneous IIoT 
nodes 

Batching of Secret Shares Aggregates updates in mini-
batches before encryption 

Reduces computation and 
transmission frequency 

Precomputed 
Randomness 

Pre-generates randomness for 
secret sharing schemes 

Accelerates SMPC execution 
during training rounds 

 
5. RESULTS AND DISCUSSION 
5.1 Comparison of performance 
In order to approve the efficiency of the suggested 
SMPC-enhanced Federated Learning (FL) solution 
in the Industrial IoT (IIoT) conditions, we provided 
an experimental study analysis that compared 
three primary approaches with the identical 
infrastructure setup as that used to implement the 
proposed framework: traditional Centralized 
Machine Learning (CML), Vanilla Federated 
Learning (VFL), and Federated Learning with 
Differential Privacy application (FL + DP). The 
used experiments included three datasets, relevant 
to IIoT: Industry-MNIST dataset and UCI Gas 
Sensor Array, as well as NASA C-MAPSS in the 
context of their focus on various industrial sensing 
and operational problems. As the results indicate, 
the centralized model had maximal accuracy with 
F1-score of 0.976 and accuracy of 97.2%, though at 
the cost of extreme privacy risk level, which proves 
inappropriate when it comes to sensitive industrial 
applications. Vanilla FL had less accuracy (95.4%) 
and F1-score (0.951) and caused moderate privacy 
leakage risk because of sharing unencrypted 
gradients. Although the FL+DP method enhanced 
privacy at a given level of differential privacy of 
93.6% accuracy, the method had the longest 
training time and communication overhead. By 
comparison, the presented FL + SMPC showed a 
competent balance between the valued accuracy, 
94.8 percent, F1-score, 0.944, and the privacy 
leakage risk that is determined as "Very Low." 
Despite marginally poor interaction in accuracy 

(minus 0.6% relative to VFL), the technique 
provided a dramatic rise in the privacy assurances 
at similar communication and training demand. 
Having communication 1.3 MB/round and average 
training time of 125.7 seconds, our strategy was 
widely practical in two aspects: to be secure and 
scaleable in IIoT application and also quite 
relevant in practice in industrial AI work requiring 
real-time sensitivity in both model performance 
and data privacy. 
 
5.2 Overhead on Communication and 
Computation 
Although this will add a relatively large 15 per cent 
increase in the per-round communication 
overhead as compared to Vanilla Federated 
Learning (VFL), Secure Multi-Party Computation 
(SMPC) is still operated reasonably within the 
boundaries of the Industrial IoT (IIoT) setup. This 
extra overhead is negated successfully using 
additive secret sharing and the method of batching 
where the number and size of shares to be sent is 
optimized and thus saves bandwidth in a network. 
In order to understand the computational viability 
of the proposed framework on a standard IIoT 
hardware we carried out deployment tests on its 
constrained edge computing hardware including 
the Raspberry Pi 4 and the NVIDIA Jetson Nano. On 
the Raspberry Pi, the average usage of CPU was 
54.2%, the amount of memory was 148 MB, and 
the inference latency was 156 milliseconds, 
whereas the Jetson Nano worked even better with 
43.7 percent CPU, 132 MB of memory, and a very 
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low latency of 88 milliseconds. These findings 
reveal that the SMPC-enabled FL framework is not 
only secure, but also lightweight and feasible to be 
applied in different real-time edge applications, 
which is acceptable to be implemented in various 
industrial contexts where low-power and latency 
requirements are involved. 
 
5.3 Analysis Privacy and Security 
In order to evaluate the security resilience of the 
suggested SMPC-enhanced Federated Learning 
robust, we carried out two popular privacy attacks, 
namely, model inversion and membership 
inference attack. In Gradient Inversion Attack, 
according to the discussed methodology by Zhu et 
al. (2019), an attacker tried to recover training 
examples based on joint gradients. Although this 
attack partially succeeded in Vanilla Federated 
Learning (VFL), it did not succeed in our SMPC-
integrated system at all because the encryption 
and randomization of individual updates, through 
additive secret sharing, had practically made them 
completely unreadable, and trying to reconstruct 
any input sample in a meaningful way would have 
been impossible. Also in the Membership Inference 
Attack, in which the goal is to identify whether 
some data item exists within the training set of a 
model, the attacker was considerably less accurate 
in their classification tasks when subjected to a 
FL+SMPC scheme, with 88.5% accuracy on VFL, 
and mere 54.1% with FL+SMPC. Close to random 
level performance presupposes a considerable 
elevation of privacy preservation, and adversaries 
cannot statistically infer the membership in the 
dataset. These findings firmly rely that SMPC 
integration leads to strong data leakage resistance, 
making sure that even strong inference-based 
attacks do not breach individual training samples 
or model contribution in IIoT federated settings. 
 
5.4 Fault Tolerance and scale-up 
In order to test the scalability and robustness of 
the proposed Federated Learning scheme based on 
SMPC, we tested the scheme through the 
evaluation in different numbers of IIoT clients, 
with 10 to 100 nodes. These findings proved that 
the system is effectively scaled, where training 
time scales sub-linearly with the number of 
participating nodes. The parallelism of the additive 
secret sharing and aggregation mechanisms has 
been pinpointed as the reason behind this 
desirable scaling behavior as it helps share and 
spread the computational burden and decreases 
synchronization points. In addition to that, the 
framework has high fault tolerance ability. The 
protocol showed robust convergence of the global 
model even in the presence of up to 30 percent of 
nodes having to drop or fail in communication. 
This strength comes with it being resilient to the 

SMPC protocol that can reconstruct aggregate 
updates based on the partial shares without loss of 
integrity and security of the computation. Such 
results support the idea that the designed system 
will be suitable to scale to large-scale and changing 
IIoT applications where node availability and 
network reliability might change. 
 
5.5 Simulation of Industrial Use-Case 
In order to justify the real-world applicability of 
the proposed SMPC-enhanced Federated Learning 
architecture, a simulation of a production line in a 
smart factory with 20 heterogeneous edge devices, 
simulated sensors, programmable logic controllers 
(PLCs), and vision-based inspection systems, was 
simulated. These tools jointly trained a structural 
defect model using its locally created and 
distributed datasets without exchanging 
unprocessed datasets. SMPC protocol was 
designed to achieve privacy in their training on 
model updates through aggregation in a 
confidential manner. The system attained large 
predictive accuracy of 94.2 percentage rate of 
defect detection that is befitting industrial 
applications of quality control. Above all data 
leakage incidents were not recorded throughout 
the simulation which proves the high level of 
security ensured by the framework. This 
deployments show the viability and efficiency of 
SMPC- FL in practical complex industrial settings 
to enable safe and privacy-preserving industrial-
scale AI automation in factories. 
 
5.6 Discussion Summary 
Proposed Federated Learning model combined 
with Secure Multi-Party Computation (FL + SMPC) 
has a number of strengths that imply that the 
technology can be deployed in the context of 
Industrial IoT (IIoT) with a small number of 
manageable trade-offs. Regarding privacy 
guarantees, the framework sets privacy levels 
almost as high as possible, by removing the raw 
gradient exposure risks completely using secret 
sharing, resulting in a slight overhead in 
communication, however. At a modelling 
performance perspective, FL + SMPC shows nearly 
the same accuracy levels as vanilla FL, and a minor 
reduction is caused by quantization and noise 
associated to the encryption. In the context of 
system support, the framework has already been 
able to validate support on resource-limited 
systems like Raspberry Pi, Jetson Nano and even 
on Arduino-class microcontrollers, and thus 
demonstrates its low cost design; nevertheless, it 
requires the use of crypto-efficiency focused 
firmware to be able to support secure 
computations effectively. Finally, the architecture 
has industrial scalability in that it has worked in 
arrangements that use 10 to 100 nodes, although 
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the viable implementation needs bandwidth-
conscious aggregation policies to ensure 
responsive and congestion-free networks. In 

general, the framework has an impressive balance 
between the levels of security, accuracy, and 
applicability in IIoT applications in real life. 

 

 
Figure 6. Key Attributes of the Proposed SMPC-FL Framework in IIoT 

 
Table 2. Performance and Privacy Evaluation of FL Approaches 

Method Accuracy 
(%) 

F1-
Score 

Communication 
Overhead 

(MB/round) 

Training 
Time (sec) 

Privacy 
Leakage 

Risk 
Centralized 
ML 

97.2 0.976 N/A 86.5 High 

Vanilla FL 95.4 0.951 1.1 120.2 Moderate 
FL + DP 
(ε=1.0) 

93.6 0.927 1.3 130.6 Low 

FL + SMPC 
(Proposed) 

94.8 0.944 1.3 125.7 Very Low 

 
6. CONCLUSION 
We have presented a secure, scalable and 
lightweight Federated Learning (FL) framework 
suitable to Industrial IoT (IIoT) systems, 
augmented by the use of Secure Multi-Party 
Computation (SMPC) to support industrial IoT 
(IIoT) systems, and provided validation and proof-
of-concept. With the help of additive secret sharing 
and lightweight cryptographic protocol, the system 
supports keeping the process of model updates 
private and resistant to inference attacks without 
the requirement of a trusted central aggregator. 
Investigations on large data resources that belong 
to a variety of IIoT-related datasets and hardware 
systems showed that the suggested methodology 
behaves well in balancing privacy protection, 
model accuracy, and communication efficiency and 
compatibility on an edge device. It is worth noting 
that the framework supported a significant level of 
detection performance and strong convergence, 
even when facing adversarial effect, mass 
deployment, partial node failures, et cetera. It has 
also demonstrated its practicality when applied to 

real-world industrial application, including 
examples of smart factory simulations, including a 
variety of edge components, such as PLCs and 
sensors. The presented results provide bare 
evidence of how SMPC-enhanced FL can be utilized 
as the technology base of secure collaborative AI in 
mission-critical IIoT applications with utmost 
importance allocated to data secrecy, system 
diversity, and reliable operation. As future work, 
this framework is promising to be generalized in 
future to utilize hybrid cryptographic mechanisms 
including a combination of SMPC and Differential 
Privacy or Homomorphic Encryption to improve 
resiliency against more powerful adversaries. Also, 
the combination with the decentralized trust 
systems such as blockchain and finally 
enlightenment of the auditability, accountability, 
and secure federated coordination in the trustless 
industrial playground will be discussed. 
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