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 The exploding number of Internet of Things (IoT) devices in critical 
infrastructure, smart homes and industrial systems has presented the 
complex security challenges since the devices are heterogeneous, have 
limited resources and are highly interconnected. Conventional anomaly 
detection methods, such as rule system and signature-based systems, 
are not easily adjusted to highly dynamic and advanced attack vectors 
particularly on environments at large scale and decently distributed 
environments. In this paper, we present a graph-based machine 
learning model that would use the existing relational nature of the 
communications among devices in an IoT ecosystem to further identify 
unusual activities in the IoT ecosystem. Particularly, IoT networks can 
be conceptualized as dynamic graphs that use individual devices as 
nodes and communication events as edges with temporal and 
contextual metadata associated with these communication events. To 
learn both spatial interactions and time-varying dynamics of networks 
behavior the proposed framework uses Graph Neural Networks (GNNs) 
combined with recurrent temporal block which can be LSTM or GRU. 
This allows the model to find not only unchanging or point anomalies, 
but also more complicated patterns that relate to stealthy, evolving 
threats. To put critical interactions first and further make this model 
interpretable, an edge-level attention mechanism is further introduced. 
The validity of the framework is proved by publicly available datasets, 
including BoT-IoT and TON_IoT, showing a high detection accuracy and 
limited false-positive accuracies as well as an effective computational 
performance flexible enough to real-time usage. The findings indicate 
the generalizability of the framework in different topologies of IoT and 
protocols and performs better than a variety of baseline and state-of-
the-art machine learning models. What is more, the system can work in 
edge and fog computing as well because of its lightweight nature and 
the ability to make decisions locally. On balance, the proposed study 
makes an advancement in the current state of art of IoT security 
through the creation of a scalable, dynamic, and explainable graph-
based machine learning anomaly detection technique as a robust 
protection mechanism against cybersecurity threats in a next-
generation smart setting. 
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1. INTRODUCTION 
Internet of Things (IoT) has become a 
revolutionary phenomenon that allows close 
interconnection of a number of devices, which are 
currently used at home, as wearable gadgets, in 
industries, and medical conditions. With the deep 
integration of the IoT technologies into our 
everyday routine and into the most important 
infrastructures, they not only bring the benefits of 
convenience and automation but also embed 
serious cybersecurity vulnerabilities. The 
heterogeneous environment of IoT is defined as 
the wide range of possible devices, communication 

protocols, and scales of deployment which result in 
the broad attack surface with expanding 
opportunities to find a vulnerability in it and 
leverage it by adversaries. IoT systems may be 
severely harmed by security breaches with serious 
outcomes such as theft of data, interference with 
operations, and even harm to a person. 
Traditional anomaly detection methods which 
include signature based IDS, statistical profiling, or 
even threshold based rule, do not quite work in the 
IoT setup. The solution does this with fixed 
patterns or known behavioral thresholds which do 
not allow the opportunities to track new stealthy 
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or developing cyber-attacks. In addition, IoT 
networks are characterized by very distributed 
networks and dynamic behavior patterns where 
the classic-central security apparatus struggles to 
work. Consequently, cutting-edge and dynamic 
security frameworks that are smart, flexible and 
expandable need to be developed to capture, 
process and react to weird procedures in real time. 
A promising way to overcome these challenges is 
the graph-based machine learning. Specifically, 
graph-based methods allow a natural 
representation of the assemblages of complex and 
dynamically shifting networks produced by IoT 
networks, since nodes in a graph correspond to the 
elements of a network (in this case the IoT 
devices), and the edges between them correspond 
to the communication or transmission of data 
between the elements. Such graphical 
implementations allow the tracking of structural 
links and behavioral interdependencies that are 
usually an important indicator of cyber anomalies. 
Specifically, based on Graph Neural Networks 
(GNNs), there is a high potential in learning on 
structured data in numerous fields since they are 
able to capture high-level patterns on both graph 
topology and node-level features. 
In this paper we introduce a new anomaly 
detection model, which uses temporal analysis and 
a graph based learning framework to identify 
malicious behaviour in IoT environments. 
Combining spatial modeling through GNNs with 
temporal sequence learning with recurrent neural 
networks our method has the potential to detect 
instantaneous and time-historical anomalies as 
well as any emerging threats. It is a model trained 
and validated using benchmark IoT security 
datasets that are made to be deployed in real-time 
edge-enabled applications. We will provide a voice 
on creating a strong, scalable explainable intrusion 
detection system that fits the specific challenges of 
contemporary IoT ecosystems. 
 
2. RELATED WORK 
IoT security is one of the most popular areas of 
research with the amount of vulnerability surface 
caused by billions of smart devices forming 
interconnected networks constantly growing. One 
of the primary fields of concern in this domain is 
anomaly detection that refers to detecting the 
abnormal deviations of behavior that would be the 
possible signs of the cyber threat. 
 
2.1 IoT Anomaly Detection 
The most common forms of intrusion detection 
systems (IDS) that are used in IoT networks are 
normally classified as signature-based IDS or 
anomaly-based IDS. With signature-based IDSs, 
detection is based on the usage of priori patterns 
of known attacks resulting in high accuracy against 

known attacks yet they cannot detect zero-day or 
new attacks [1]. Anomaly-based ones, however, 
develop a model of normal device or traffic 
behavior and raise flags on abnormalities. In 
dynamic IoT settings these strategies are highly 
prone to false-positives [2], although they are 
more adaptive than other strategies. Statistical 
profiling, support vector machines and clustering 
have been used but they have a tendency to ignore 
inter-device communication patterns necessary to 
identify context-aware threats. 
 
2.2 Intrusion Detection Graph-Based 
In recent times graph-based methods have been 
found to show promise as alternate approaches to 
network intrusion detection. In these methods, the 
IoT system is described graphically where devices 
are represented by nodes and the 
connections/relationships between the devices are 
described by edges. Such representations 
inherently include topological and behavioral 
correlation that can represent malicious activity 
[3]. It has been proved that graph metrics (e.g., 
degree centrality, betweenness, clustering 
coefficient) are useful in detecting the presence of 
compromised nodes or anomalous sub graphs 
within the industrial IoT systems [4]. Nevertheless, 
the majority of graph-based approaches are based 
on the assumption of static graphs, which do not 
represent real-time pattern IoT traffic to the same 
degree. 
 
2.3 Cybersecurity and Graph Neural Networks 
Deep learning on graphs With the emergence of 
deep learning on graphs, Graph Neural Networks 
(GNNs) have been found to have the potential to 
learn the representation over complex and 
relational data structures. There are also recent 
applications of Graph Convolutional Networks 
(GCNs) [5] and Graph Attention Networks (GATs) 
[6] in cybersecurity, such as, botnet detection, 
malware classification, and network flow 
inspection, etc. The detection of malicious nodes 
was done with a GNN-based model to learn the 
contextual dependencies on a communication 
graph [7]. Although useful, these models can also 
be considered to be very rigid in that they neglect 
time in the evolution of devices behavior which is 
essential to detection stealthy or coordinated 
attacks. 
 
2.4 Gap in the Research 
Although there has been significant advancement, 
one major drawback still exists in the system of 
dynamic graph learning as a method of IoT 
security anomaly detection. The existing solutions 
are restricted to illustrations of communication 
patterns on stationary graphs or they do not 
consider time dependencies. Also, little has been 
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done to report the multi-modality of IoT data (e.g. 
sensor readings, control signals, metadata) on the 
same graph learning platform. The paper fills this 
gap with a Spatio-temporal GNN-based framework 

which learns both topological structures and 
temporal relationships to detect anomalies in 
heterogenous IoT environment robustly, and in 
real-time. 

 
Table 1. Summary of Related Work in IoT Anomaly Detection 

Aspect Key Techniques / Findings Limitations 
Anomaly Detection in IoT Signature-based and anomaly-

based IDS; traditional ML (SVM, 
clustering); models normal 
behavior to flag deviations 

Poor detection of novel/zero-
day attacks; high false 
positives; lacks context from 
device interactions 

Graph-Based Intrusion 
Detection 

Represents IoT as graphs; uses 
metrics like centrality and 
clustering coefficient to detect 
anomalies 

Mostly static graphs; unable to 
reflect real-time behavior 
changes in IoT traffic 

Graph Neural Networks in 
Cybersecurity 

GCNs and GATs applied to 
botnet/malware detection; 
captures node dependencies and 
interaction context 

Typically ignores temporal 
evolution; limited to static or 
single-snapshot graphs 

Identified Research Gap Need for dynamic graph learning 
and multi-modal integration (e.g., 
metadata, sensor streams); spatio-
temporal modeling required 

Few models handle both 
topological and temporal 
dynamics; limited 
explainability and adaptability 

 
3. PROPOSED METHODOLOGY 
3.1 Graph Construction 
The most important action to consider graph-
based machine learning in IoT security is the 
ability to construct meaningful graphs that capture 
real and specific communication and behavioral 
patterns of devices in the network. The 
performance of any anomaly detection graph-
based system will be dependent on the manner of 
capturing of the interaction and characteristics 
involved in a possible security compromise. 
The IoT network has been modelled in the 
proposed model as a dynamic directed graph, 
𝐆𝐭 =  𝐕𝐭, 𝐄𝐭 where 𝐕𝐭represents the set of vertices 
(node) and 𝐄𝐭 represents the set of edges at time 𝐭. 
The snapshot of the state of the network is taken 
every time, corresponding to a predetermined 
time interval, which allows learning in time. 
 
Nodes (Vertices) 
Every node 𝐯 ∈ 𝐕𝐭belongs to an IoT device of the 
network. Such devices can consist of sensors (e.g. 
temperature, motion), actuators (e.g. relays, 
motors), edge gateways, routers, or any other 
connected computing units. Node attributes 
contain the static and dynamic information of the 
devices. Statically identified features would be 
device type, manufacturer or capability type 
whereas dynamically identify features would be: 
CPU utilisation, memory utilisation, authentication 
status and recent activity score. 
 
Edges 
Every edge 𝐞 ∈ 𝐄𝐭represents a logical interaction 
(communication event) among two devices. These 

directed edges point to the flow of message 
between a source node and a destination node and 
are time-stamped in order to maintain a temporal 
order. The communications can be of the type of 
TCP/UDP sessions, HTTP requests, MQTT 
publish/subscribe, or the remote procedure calls 
(RPCs). This difference in weight can be to 
represent the strength or intensity of the 
interaction, by the frequency, by the volume, or by 
the protocol priority of the communicating path. 
 
Node and Edge Features 
In order to increase the learning capacity of the 
proposed anomaly detection model, the nodes and 
the edges on the graph representing the IoT 
network are classed together with a clearly defined 
feature vector whose elements are extracted using 
the network traffic logs and metadata. Such 
characteristics are designed to model important 
features of the device behavior and contexts of 
communication. Important features are packet 
data: packet size, source and destination ports, 
time-to-live (TTL) and protocol-specific traffic 
flags (e.g., SYN, ACK), which contain low-level 
traffic characteristics. Also, protocol type 
indicators (e.g. HTTP, MQTT, CoAP) will assist in 
defining the differences in communication 
semantics in varied IoT applications. Interaction 
intensity is recorded on a temporal basis through 
communication frequency and session duration, 
which allow a quick overview of long-term 
interaction intensity; earlier security-relevant 
interactions like authentication failures, dropped 
connections, or previously seen anomalies can be 
encoded in historical flags. All the features are 
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normalized and appeared in the form of high-
dimensional tensors, which can be consumed in 
the Graph Neural Network (GNN). The framework 
allows exploring temporal dependencies in the IoT 
network through modeling the topology as a time-
evolving graph, which is required for detecting not 
only abrupt deviations but gradual changes in 

behavior, drifts. By examining in detail all the steps 
involved in creating such a graph, there will be a 
solid basis in which topological relationships and 
overall behavior of IoT devices will be well 
displayed and a robust anomaly detection will be 
possible through graph based learning. 

 
Table 2. Summary of Node and Edge Feature Categories Used in IoT Graph Construction 

Graph Component Feature 
Category 

Example Features 

Node (Device) Static Device type, Manufacturer, 
Capability class 

Node (Device) Dynamic CPU usage, Memory load, 
Auth status 

Edge (Communication) Structural Direction, Protocol type 
(HTTP, MQTT, etc.) 

Edge (Communication) Temporal Frequency, Session duration, 
Historical flags 

 
3.2 Model Architecture 
The aforementioned anomaly detection framework 
takes advantage of the spatio-temporal graph 
neural network (ST-GNN) model that is expected 
to learn the underlying structure dependence as 
well as the temporal patterns of the 
communication patterns in the IoT environment. 
Such hybrid topology allows the model not only to 
recognize the abnormal behavior, due to the 
network topology, but also, modify to the changes 
over time, reflecting both sudden and gradual 
deviations with regard to normal behavior. 
 
Spatio Temporal Graph Neural Network (ST-
GNN) 
At the basics the model has a two-stage learning 

mechanism that integrates Graph Convolutional 

Networks (GCNs) and recurrent units; specifically 

Long Short-Term Memory (LSTM) or Gated 

Recurrent Units (GRUs). GCN component does the 

job of extraction of spatial dependencies by 

combining data of the neighbors of a node in the 

graph. Although it enables the model to 

conceptualize the behaviors of local devices within 

the larger scope of the network, it is important to 

be able to identify coordinated or multi-stage 

attacks. Officially, GCN layers achieve updated 

node representations by aggregating features of 

their neighbours according to edge-weighted 

adjacency-matrices. These embeddings are an 

encoding of spatial context at any time point. 

To accommodate temporal dependencies we 

include a recurrent neural network (RNN) layer 

that can operate on the sequence of graph 

snapshots over time. The node and edge features 

evolve over time and are captured in this RNN 

component, typically with LSTM or GRU units, and 

the model can learn time-dependent patterns, say, 

periodic behavior, session state transitions, or 

gradual compromise progression. The temporal 

module uses the spatial embeddings that are 

learned by the GCN and produces a temporally-

sensitive embedding of nodes or edges. 
 
Edge Attention Mechanism 
Further, to maintain a greater concentration on the 
important communications in the model, we 
encompass an edge attention mechanism, which 
has been inspired by Graph Attention Networks 
(GATs). In this mechanism, edges are assigned 
dynamic weight (updated with passing of 
messages) depending on the relevancy of 
communication pattern between nodes. An 
example of this would be where there is an 
unexpectedly massive increase of traffic between 
two not currently associated nodes, this would be 
checked with increased weight to the weights. The 
scores on attention are calculated using a learnable 
operation that takes into account the node 
features, the edge features as well as the past 
connections. 
 
Anomaly Scoring Function 
After a computation of spatio-temporal 
embeddings, anomaly scoring functions are 
applied to both the nodes and edges. The score 
returned by this function corresponds to the 
probability that a given node or communication 
link is being abnormal. We do this by means of a 
feedforward neural network over the last 
embedding as input which gives a score that is 
based on probability or distances. During training, 
the model is trained both on supervised loss 
(cross-entropy when labels are known) and on 
unsupervised loss (e.g. contrastive or autoencoder-
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style loss), resulting in good generalisation to 
unseen attacks. A decision threshold mechanism is 
then applied that categorises entities which are to 
be normal or anomalous. 
Composed, in collaboration, this architecture 
creates an effective and responsive anomaly-

detecting system to fuse structure understanding, 
time sensing and context prioritization- with the 
flexibility to work in real-time on heterogeneous 
and dynamic Internet of Things networks. 
 

 

 
Figure 1. Architecture of the Proposed Spatio-Temporal Graph Neural Network (ST-GNN) for Anomaly 

Detection in IoT Networks 
 
3.3 Training and Optimization 
Specifically, training a state-of-the-art anomaly 
detection model in IoT-related settings becomes 
particularly challenge-prone given that labeled 
attack data is scarce, there are many dimensions to 
network interactions, and the behavior of different 
devices changes dynamically. In order to overcome 
such challenges, the framework takes the semi-
supervised learning setting, learns a joint hybrid 
loss function with simultaneous emphasis on 
classification quality and on regularizing the 
structure, and uses scalable optimization methods 
that can be directly applied to large and time 
evolving graphs. 
 
Semi-Supervised Learning 
Real-world IoT systems would not reasonably be 

expected to have such large labeled datasets to use, 

particularly when the attack to be detected is novel 

or rare. As a solution to this shortcoming, the 

model is deployed under semi-supervised training, 

were a tiny percentage of nodes and edges are 

labeled as either benign or malicious. All the other 

majority are handled as unlabeled and they help in 

training by making neighborhood propagation and 

consistency regulations. This environment is 

advantageous to the GNN component in terms of 

leveraging the graph topology to spread the label 

information to the connected nodes, so that both 

labeled and contextual (unlabeled) data could be 

used in the learning process by the model. This 

increases generalization and allows identifying 

zero day or unknown threats. 
 
Loss Function Design 
To optimize the model effectively, we define a 
composite loss function that balances two 
objectives: 
1. Classification Loss(𝓛𝐜𝐥𝐬): On the labeled 

membership of nodes or edges, we would 
then use a cross-entropy loss tends to tune 
the model to be able to differentiate between 
the normal and the abnormal behavior 
according to the learned embeddings. 

2. Graph Structure Regularization(𝓛𝐫𝐞𝐠): 

Regularization is a generic term that refers to 
a technique applied to a formulation to obtain 
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a modified version of the formulation, with 
the aim of maximizing a particular property of 
the formulation: excessive flexibility in a 
regularization procedure is typically 
desirable, so this application of regularization 
is sometimes called a regularization method 
or regularization methodology. In statistical 
learning, the minimization of a statistical risk 
is often regularized, usually by adding a so-
called regularization functional to the 
statistical risk in order to penalize excessively 
flexible solutions to the statistical learning 
task, with the goal of encouraging aLearned 
embeddings: we add a regularizer to the loss, 
e.g. Laplacian smoothing or contrastive loss to 
ensure that the representation learned has 
connections well suited to capture the 
underlying graph structure. This term 
punishes irregular representation of nearby 
nodes and favors smoothness in embedding 
space, which favours greater separation 
between anomalies. 

The final loss is expressed as: 
ℒtotal = ℒcls +⋋. ℒreg  

Where⋋ is a hyperparameter that balances the 
importance of structure preservation. 
Scalability and Optimization Techniques 
By the nature of the scale and complexity of real- 

time IoT graphs, the model makes use of mini-
batch graph sampling strategies like Graphs AGE 
or neighbor sampling, to minimize the 
computational overhead in the course of training. 
The full graph is not processed and instead of that 
they sample localized sub graphs with the focus on 
target nodes dynamically, which enables them to 
train efficient edge or fog nodes which have limited 
resources. 
Besides that, in order to deal with temporal 
evolution, we partition the data into sliding 
temporal windows, with each window reflecting a 
temporal snapshot of the graph. Does it 
compromise the evolving patterns or make 
navigation possible and facilitate online training, 
and ongoing learning? The answer is that temporal 
windowing does both. At every iteration, the 
model gets trained using sequences of temporal 
subgraphs, which allow the detection not only of 
instantaneous anomalous events but also long-
term behavioral changes. 
A combination of these training and optimization 
can make the proposed model robust, adaptive, as 
well as scalable in terms of being able to learn well 
and efficiently using sparse data, maintaining 
structural relationships and can be run within the 
constraints of real-time requirements as needed in 
applications involving IoT. 

 

 
Figure 2. Training and Optimization Pipeline of the Proposed Semi-Supervised Graph-Based Anomaly 

Detection Framework 
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4. Experimental Setup 
To assess the performance and upper-bound 
scalability of the suggested graph-based anomaly 
detection framework, we carried out experiments 
on three famous benchmark datasets namely 
TON_IOT, BoT-IOT, and IoT-23. The datasets cover 
a wide variety of IoT setups, kinds of attacks, as 
well as traffic modalities, thus they will serve as 
good models to validate. TON_IoT dataset provides 
real-world-looking telemetry and network flow 
traces produced by industrial-style IoT attacks and 
network flow traces, and BoT-IoT involves several 
DDoS, reconnaissance, and information theft 
attacks simulated in a smart home testbed. The 
Stratosphere Lab maintains IoT-23 which contains 
labeled malware traffic captures gathered on a 
variety of IoT devices that have been infected with 
real-world botnets. The preprocessing of the data 
came into play prior to feeding to the graph model 
to make it consistent and of good quality. These 
involved discarding noise, i.e. discarding corrupt 
or irrelevant records, normalizing features such as 
scaling feature values to be of about the same scale 

across attributes, and instantiating graphs, in 
which communication events were projected into 
evolving graph representations, with temporal 
ordering and dependencies represented. To 
evaluate, several performance measurements were 
utilised in order to thoroughly evaluate the model. 
This was comprised by accuracy, precision, recall, 
and F1-score which gives some insight into how 
well the model can correctly detect anomalies with 
a low number of false alarms. Also the Areas Under 
the Receiver Operating Characteristic Curve (AUC-
ROC) was calculated to assess the stability of the 
model in establishing decision thresholds in 
different conditions. In addition to the predictive 
performance, other criteria were taken: the 
inference time and memory consumption to check 
whether the model can be deployed to edge 
devices with limited processing resources. The 
above evaluations statistically prove the potential 
of the presented framework to provide precise, 
low-latency, and cost-effective anomaly detection 
on heterogeneous IoT environments. 

 
Figure 3. Experimental Pipeline from Data Preprocessing to Graph-Based Inference 

 
Table 2. Overview of IoT Datasets Used for Experimental Evaluation 

Dataset Source Environment Attack Types Data Types 
TON_IoT UNSW 

Canberra 
Industrial IoT DDoS, Injection, Backdoor, 

Reconnaissance 
Telemetry + 
Network Flows 

BoT-IoT UNSW 
Canberra 

Smart Home / 
Testbed 

DDoS, Port Scans, Theft, 
Reconnaissance 

Network Traffic + 
Flow Stats 

IoT-23 Stratosphere 
Lab 

Real-World Device 
Traffic 

Botnet-infected traffic (Mirai, 
Torii, etc.) 

Labeled PCAPs and 
Metadata 

 
5. RESULTS AND DISCUSSION 
The experimental data proves the high-
performance of the offered graph-based approach 
to anomaly detection over the classical machine 
learning and deep learning models. In particular, 
Graph Neural Network (GNN) architecture has 
performed better compared to the Support Vector 
Machines (SVM), Random Forests (RF), and 

Convolutional Neural Networks (CNN) on all the 
benchmark datasets (TON_IoT, BoT-IoT, and IoT-
23). The GNN model provided an average accuracy 
of more than 96 percent accuracy, not to mention 
that the F1-scores always scored above 0.94, which 
indicates that the model is quite confident in 
regards to identifying known and even zero-day 
attacks. Such performance can be mostly explained 
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by the use of graph-based representation of IoT 
network, which is capable of capturing the spatial 
and contextual dependencies between devices, and 
can not be efficiently used by flat-featured 
classifiers. Temporal learning integration also 

allowed the model to detect anomalous patterns 
that would change with time and hence it was 
especially successful against long-term, stealthy 
attacks that would be ignored by snapshot-based 
models. 

 

 
Figure 4. Accuracy Comparison of GNN-Based Model against Traditional Classifiers on IoT Datasets 

 
Also, the system showed good applicability into the 
resource-limited environment like the edge and 
fog computing layers. The framework has been 
confirmed to be real-time responsive, wherein 
inference latency could not exceed 100 
milliseconds even at the edge nodes with less 
powerful equipment. ABlation study was 
implemented where the effect of various 
architectural elements was compared. The Graph 
Attention Networks (GATs) was compared with 
Graph Convolutional Networks (GCNs), where it 
was found that GATs performed better in the 
highly dynamic networks compared with GCNs as 

in highly dynamic networks there were many 
neighboring nodes with different importance, 
which could be assigned by GATs. Further, the 
detection accuracy was highly reduced when the 
temporal embedding module was removed, 
indicating the significance of time dependency 
modeling in the IoT traffic. All in all, these results 
show indeed that the ensemble of spatial, 
temporal, and attention-based, graph learning 
techniques represents an effective and scalable 
approach to anomaly detection in heterogeneous 
IoT ecosystems. 

 
Table 3. Performance Comparison of GNN and Baseline Models for Anomaly Detection in IoT Networks 

Model Average 
Accuracy (%) 

F1-Score Inference 
Latency (ms) 

Zero-Day 
Detection 
Capability 

Graph Neural Network 
(GNN) 

96.3 0.94 92 High 

Convolutional Neural 
Network (CNN) 

89.1 0.88 130 Moderate 

Random Forest (RF) 86.2 0.85 110 Low 
Support Vector 
Machine (SVM) 

83.5 0.82 125 Low 

 
6. CONCLUSION AND FUTURE WORK 
The proposed research is a graph-based machine 
learning framework that is new and capable of 
detecting anomalies in IoT security, and because of 

the dynamic, heterogeneous, and large-scale 
nature of contemporary IoT environments, the 
challenges of implementing this technology are 
increasingly high. Being able to model the device 
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interactions in terms of graph evolving in time and 
utilizing the properties of Graph Neural Networks 
(GNNs), temporal learning modules, and the power 
of the attention mechanism, the proposed model is 
able to capture a broad range of both spatial and 
behavioral dependencies that cannot easily be 
captured by more classical detection systems. This 
framework has been tested in benchmark datasets 
such as TON_IoT, BoT-IoT, and IoT-23 and it 
continuously yielded the best results in detection 
accuracy the level of false-positives, and real-time 
responsiveness when compared to conventional 
machine learning algorithms and models based on 
CNNs. Besides, being lightweight and featuring a 
low level of latency of inference, it can be used in 
edge and fog computing systems, providing 
capabilities to respond to threats in time in such 
distributed systems. In future, the aim will be to 
gain further scalability and privacy improvement 
using federated graph learning; allowing 
decentralized devices to train securely without 
exchanging raw data. Moreover, we would like to 
incorporate Internet continuous training systems, 
which will respond to changing threats without re-
training afresh. Lastly, to augment trust and 
transparency in critical IoT applications, we intend 
to investigate explainable GNN models that give 
interpretable insights into anomalies, enable 
forensic analysis and actionable intelligent that can 
respond to the presented threats. The given work 
forms the basis of the next generation smart 
security systems that meet the requirements of 
complex IoT systems. 
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