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The exploding number of Internet of Things (IoT) devices in critical
infrastructure, smart homes and industrial systems has presented the
complex security challenges since the devices are heterogeneous, have
limited resources and are highly interconnected. Conventional anomaly
detection methods, such as rule system and signature-based systems,
are not easily adjusted to highly dynamic and advanced attack vectors
particularly on environments at large scale and decently distributed
environments. In this paper, we present a graph-based machine
learning model that would use the existing relational nature of the
communications among devices in an IoT ecosystem to further identify
unusual activities in the IoT ecosystem. Particularly, IoT networks can
be conceptualized as dynamic graphs that use individual devices as
nodes and communication events as edges with temporal and
contextual metadata associated with these communication events. To
learn both spatial interactions and time-varying dynamics of networks
behavior the proposed framework uses Graph Neural Networks (GNNs)
combined with recurrent temporal block which can be LSTM or GRU.
This allows the model to find not only unchanging or point anomalies,
but also more complicated patterns that relate to stealthy, evolving
threats. To put critical interactions first and further make this model
interpretable, an edge-level attention mechanism is further introduced.
The validity of the framework is proved by publicly available datasets,
including BoT-IoT and TON_I[oT, showing a high detection accuracy and
limited false-positive accuracies as well as an effective computational
performance flexible enough to real-time usage. The findings indicate
the generalizability of the framework in different topologies of IoT and
protocols and performs better than a variety of baseline and state-of-
the-art machine learning models. What is more, the system can work in
edge and fog computing as well because of its lightweight nature and
the ability to make decisions locally. On balance, the proposed study
makes an advancement in the current state of art of IoT security
through the creation of a scalable, dynamic, and explainable graph-
based machine learning anomaly detection technique as a robust
protection mechanism against cybersecurity threats in a next-
generation smart setting.

1. INTRODUCTION
Internet

of Things (IoT) has
revolutionary phenomenon that allows close

protocols, and scales of deployment which result in
become a the broad attack surface with expanding
opportunities to find a vulnerability in it and

interconnection of a number of devices, which are
currently used at home, as wearable gadgets, in
industries, and medical conditions. With the deep
integration of the IoT technologies into our
everyday routine and into the most important
infrastructures, they not only bring the benefits of
convenience and automation but also embed
serious  cybersecurity  vulnerabilities. = The
heterogeneous environment of 1oT is defined as
the wide range of possible devices, communication

leverage it by adversaries. [oT systems may be
severely harmed by security breaches with serious
outcomes such as theft of data, interference with
operations, and even harm to a person.

Traditional anomaly detection methods which
include signature based IDS, statistical profiling, or
even threshold based rule, do not quite work in the
IoT setup. The solution does this with fixed
patterns or known behavioral thresholds which do
not allow the opportunities to track new stealthy
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or developing cyber-attacks. In addition, IoT
networks are characterized by very distributed
networks and dynamic behavior patterns where
the classic-central security apparatus struggles to
work. Consequently, cutting-edge and dynamic
security frameworks that are smart, flexible and
expandable need to be developed to capture,
process and react to weird procedures in real time.
A promising way to overcome these challenges is
the graph-based machine learning. Specifically,
graph-based  methods allow a  natural
representation of the assemblages of complex and
dynamically shifting networks produced by IoT
networks, since nodes in a graph correspond to the
elements of a network (in this case the IoT
devices), and the edges between them correspond
to the communication or transmission of data
between the elements. Such  graphical
implementations allow the tracking of structural
links and behavioral interdependencies that are
usually an important indicator of cyber anomalies.
Specifically, based on Graph Neural Networks
(GNNs), there is a high potential in learning on
structured data in numerous fields since they are
able to capture high-level patterns on both graph
topology and node-level features.

In this paper we introduce a new anomaly
detection model, which uses temporal analysis and
a graph based learning framework to identify
malicious behaviour in [oT environments.
Combining spatial modeling through GNNs with
temporal sequence learning with recurrent neural
networks our method has the potential to detect
instantaneous and time-historical anomalies as
well as any emerging threats. It is a model trained
and validated using benchmark IoT security
datasets that are made to be deployed in real-time
edge-enabled applications. We will provide a voice
on creating a strong, scalable explainable intrusion
detection system that fits the specific challenges of
contemporary [oT ecosystems.

2. RELATED WORK

IoT security is one of the most popular areas of
research with the amount of vulnerability surface
caused by billions of smart devices forming
interconnected networks constantly growing. One
of the primary fields of concern in this domain is
anomaly detection that refers to detecting the
abnormal deviations of behavior that would be the
possible signs of the cyber threat.

2.1 1oT Anomaly Detection

The most common forms of intrusion detection
systems (IDS) that are used in loT networks are
normally classified as signature-based IDS or
anomaly-based IDS. With signature-based IDSs,
detection is based on the usage of priori patterns
of known attacks resulting in high accuracy against

known attacks yet they cannot detect zero-day or
new attacks [1]. Anomaly-based ones, however,
develop a model of normal device or traffic
behavior and raise flags on abnormalities. In
dynamic IoT settings these strategies are highly
prone to false-positives [2], although they are
more adaptive than other strategies. Statistical
profiling, support vector machines and clustering
have been used but they have a tendency to ignore
inter-device communication patterns necessary to
identify context-aware threats.

2.2 Intrusion Detection Graph-Based

In recent times graph-based methods have been
found to show promise as alternate approaches to
network intrusion detection. In these methods, the
IoT system is described graphically where devices
are represented by nodes and the
connections/relationships between the devices are
described by edges. Such representations
inherently include topological and behavioral
correlation that can represent malicious activity
[3]- It has been proved that graph metrics (e.g.,
degree centrality, betweenness, clustering
coefficient) are useful in detecting the presence of
compromised nodes or anomalous sub graphs
within the industrial [oT systems [4]. Nevertheless,
the majority of graph-based approaches are based
on the assumption of static graphs, which do not
represent real-time pattern IoT traffic to the same
degree.

2.3 Cybersecurity and Graph Neural Networks
Deep learning on graphs With the emergence of
deep learning on graphs, Graph Neural Networks
(GNNs) have been found to have the potential to
learn the representation over complex and
relational data structures. There are also recent
applications of Graph Convolutional Networks
(GCNs) [5] and Graph Attention Networks (GATSs)
[6] in cybersecurity, such as, botnet detection,
malware classification, and network flow
inspection, etc. The detection of malicious nodes
was done with a GNN-based model to learn the
contextual dependencies on a communication
graph [7]. Although useful, these models can also
be considered to be very rigid in that they neglect
time in the evolution of devices behavior which is
essential to detection stealthy or coordinated
attacks.

2.4 Gap in the Research

Although there has been significant advancement,
one major drawback still exists in the system of
dynamic graph learning as a method of IoT
security anomaly detection. The existing solutions
are restricted to illustrations of communication
patterns on stationary graphs or they do not
consider time dependencies. Also, little has been
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done to report the multi-modality of IoT data (e.g.
sensor readings, control signals, metadata) on the
same graph learning platform. The paper fills this
gap with a Spatio-temporal GNN-based framework

which learns both topological structures and
temporal relationships to detect anomalies in
heterogenous IoT environment robustly, and in
real-time.

Table 1. Summary of Related Work in IoT Anomaly Detection

clustering); models normal

behavior to flag deviations

Aspect Key Techniques / Findings Limitations
Anomaly Detection in [oT Signature-based and anomaly- | Poor detection of novel/zero-
based IDS; traditional ML (SVM, | day attacks; high false

positives; lacks context from
device interactions

captures node dependencies and
interaction context

Graph-Based Intrusion | Represents I[oT as graphs; uses | Mostly static graphs; unable to

Detection metrics  like  centrality and | reflect real-time behavior
clustering coefficient to detect | changesin IoT traffic
anomalies

Graph Neural Networks in | GCNs and GATs applied to | Typically ignores temporal

Cybersecurity botnet/malware detection; | evolution; limited to static or

single-snapshot graphs

Identified Research Gap

Need for dynamic graph learning
and multi-modal integration (e.g.,
metadata, sensor streams); spatio-
temporal modeling required

Few models handle both
topological and temporal
dynamics; limited

explainability and adaptability

3. PROPOSED METHODOLOGY

3.1 Graph Construction

The most important action to consider graph-
based machine learning in IoT security is the
ability to construct meaningful graphs that capture
real and specific communication and behavioral
patterns of devices in the network. The
performance of any anomaly detection graph-
based system will be dependent on the manner of
capturing of the interaction and characteristics
involved in a possible security compromise.

The IoT network has been modelled in the
proposed model as a dynamic directed graph,
G; = (V, Ep)where V,represents the set of vertices
(node) and E; represents the set of edges at time t.
The snapshot of the state of the network is taken
every time, corresponding to a predetermined
time interval, which allows learning in time.

Nodes (Vertices)

Every node v € Vibelongs to an IoT device of the
network. Such devices can consist of sensors (e.g.
temperature, motion), actuators (e.g. relays,
motors), edge gateways, routers, or any other
connected computing units. Node attributes
contain the static and dynamic information of the
devices. Statically identified features would be
device type, manufacturer or capability type
whereas dynamically identify features would be:
CPU utilisation, memory utilisation, authentication
status and recent activity score.

Edges
Every edge e € Erepresents a logical interaction
(communication event) among two devices. These

directed edges point to the flow of message
between a source node and a destination node and
are time-stamped in order to maintain a temporal
order. The communications can be of the type of
TCP/UDP sessions, HTTP requests, MQTT
publish/subscribe, or the remote procedure calls
(RPCs). This difference in weight can be to
represent the strength or intensity of the
interaction, by the frequency, by the volume, or by
the protocol priority of the communicating path.

Node and Edge Features

In order to increase the learning capacity of the
proposed anomaly detection model, the nodes and
the edges on the graph representing the IoT
network are classed together with a clearly defined
feature vector whose elements are extracted using
the network traffic logs and metadata. Such
characteristics are designed to model important
features of the device behavior and contexts of
communication. Important features are packet
data: packet size, source and destination ports,
time-to-live (TTL) and protocol-specific traffic
flags (e.g, SYN, ACK), which contain low-level
traffic  characteristics. Also, protocol type
indicators (e.g. HTTP, MQTT, CoAP) will assist in
defining the differences in communication
semantics in varied IoT applications. Interaction
intensity is recorded on a temporal basis through
communication frequency and session duration,
which allow a quick overview of long-term
interaction intensity; earlier security-relevant
interactions like authentication failures, dropped
connections, or previously seen anomalies can be
encoded in historical flags. All the features are
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normalized and appeared in the form of high-
dimensional tensors, which can be consumed in
the Graph Neural Network (GNN). The framework
allows exploring temporal dependencies in the IoT
network through modeling the topology as a time-
evolving graph, which is required for detecting not
only abrupt deviations but gradual changes in

behavior, drifts. By examining in detail all the steps
involved in creating such a graph, there will be a
solid basis in which topological relationships and
overall behavior of IoT devices will be well
displayed and a robust anomaly detection will be
possible through graph based learning.

Table 2. Summary of Node and Edge Feature Categories Used in [oT Graph Construction

Graph Component Feature Example Features
Category

Node (Device) Static Device type, Manufacturer,
Capability class

Node (Device) Dynamic CPU usage, Memory load,
Auth status

Edge (Communication) Structural Direction, Protocol type
(HTTP, MQTT, etc.)

Edge (Communication) Temporal Frequency, Session duration,
Historical flags

3.2 Model Architecture

The aforementioned anomaly detection framework
takes advantage of the spatio-temporal graph
neural network (ST-GNN) model that is expected
to learn the underlying structure dependence as
well as the temporal patterns of the
communication patterns in the IoT environment.
Such hybrid topology allows the model not only to
recognize the abnormal behavior, due to the
network topology, but also, modify to the changes
over time, reflecting both sudden and gradual
deviations with regard to normal behavior.

Spatio Temporal Graph Neural Network (ST-
GNN)

At the basics the model has a two-stage learning
mechanism that integrates Graph Convolutional
Networks (GCNs) and recurrent units; specifically
Long Short-Term Memory (LSTM) or Gated
Recurrent Units (GRUs). GCN component does the
job of extraction of spatial dependencies by
combining data of the neighbors of a node in the
graph. Although it enables the model to
conceptualize the behaviors of local devices within
the larger scope of the network, it is important to
be able to identify coordinated or multi-stage
attacks. Officially, GCN layers achieve updated
node representations by aggregating features of
their neighbours according to edge-weighted
adjacency-matrices. These embeddings are an
encoding of spatial context at any time point.

To accommodate temporal dependencies we
include a recurrent neural network (RNN) layer
that can operate on the sequence of graph
snapshots over time. The node and edge features
evolve over time and are captured in this RNN
component, typically with LSTM or GRU units, and

the model can learn time-dependent patterns, say,
periodic behavior, session state transitions, or
gradual compromise progression. The temporal
module uses the spatial embeddings that are
learned by the GCN and produces a temporally-
sensitive embedding of nodes or edges.

Edge Attention Mechanism

Further, to maintain a greater concentration on the
important communications in the model, we
encompass an edge attention mechanism, which
has been inspired by Graph Attention Networks
(GATs). In this mechanism, edges are assigned
dynamic weight (updated with passing of
messages) depending on the relevancy of
communication pattern between nodes. An
example of this would be where there is an
unexpectedly massive increase of traffic between
two not currently associated nodes, this would be
checked with increased weight to the weights. The
scores on attention are calculated using a learnable
operation that takes into account the node
features, the edge features as well as the past
connections.

Anomaly Scoring Function

After a computation of spatio-temporal
embeddings, anomaly scoring functions are
applied to both the nodes and edges. The score
returned by this function corresponds to the
probability that a given node or communication
link is being abnormal. We do this by means of a
feedforward neural network over the last
embedding as input which gives a score that is
based on probability or distances. During training,
the model is trained both on supervised loss
(cross-entropy when labels are known) and on
unsupervised loss (e.g. contrastive or autoencoder-
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style loss), resulting in good generalisation to
unseen attacks. A decision threshold mechanism is
then applied that categorises entities which are to
be normal or anomalous.

Composed, in collaboration, this architecture
creates an effective and responsive anomaly-

detecting system to fuse structure understanding,
time sensing and context prioritization- with the
flexibility to work in real-time on heterogeneous
and dynamic Internet of Things networks.
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Figure 1. Architecture of the Proposed Spatio-Temporal Graph Neural Network (ST-GNN) for Anomaly
Detection in [oT Networks

3.3 Training and Optimization

Specifically, training a state-of-the-art anomaly
detection model in loT-related settings becomes
particularly challenge-prone given that labeled
attack data is scarce, there are many dimensions to
network interactions, and the behavior of different
devices changes dynamically. In order to overcome
such challenges, the framework takes the semi-
supervised learning setting, learns a joint hybrid
loss function with simultaneous emphasis on
classification quality and on regularizing the
structure, and uses scalable optimization methods
that can be directly applied to large and time
evolving graphs.

Semi-Supervised Learning

Real-world IoT systems would not reasonably be
expected to have such large labeled datasets to use,
particularly when the attack to be detected is novel
or rare. As a solution to this shortcoming, the
model is deployed under semi-supervised training,
were a tiny percentage of nodes and edges are
labeled as either benign or malicious. All the other
majority are handled as unlabeled and they help in

training by making neighborhood propagation and
consistency regulations. This environment is
advantageous to the GNN component in terms of
leveraging the graph topology to spread the label
information to the connected nodes, so that both
labeled and contextual (unlabeled) data could be
used in the learning process by the model. This
increases generalization and allows identifying
zero day or unknown threats.

Loss Function Design

To optimize the model effectively, we define a

composite loss function that balances two

objectives:

1. Classification Loss(L.s): On the labeled
membership of nodes or edges, we would
then use a cross-entropy loss tends to tune
the model to be able to differentiate between
the normal and the abnormal behavior
according to the learned embeddings.

2. Graph Structure Regularization(£,,):
Regularization is a generic term that refers to
a technique applied to a formulation to obtain
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a modified version of the formulation, with
the aim of maximizing a particular property of
the formulation: excessive flexibility in a
regularization = procedure is  typically
desirable, so this application of regularization
is sometimes called a regularization method
or regularization methodology. In statistical
learning, the minimization of a statistical risk
is often regularized, usually by adding a so-
called regularization functional to the
statistical risk in order to penalize excessively
flexible solutions to the statistical learning
task, with the goal of encouraging aLearned
embeddings: we add a regularizer to the loss,
e.g. Laplacian smoothing or contrastive loss to
ensure that the representation learned has
connections well suited to capture the
underlying graph structure. This term
punishes irregular representation of nearby
nodes and favors smoothness in embedding
space, which favours greater separation
between anomalies.

The final loss is expressed as:

Ltotal = Lcls +>‘-Lreg

Wherex is a hyperparameter that balances the

importance of structure preservation.

Scalability and Optimization Techniques

By the nature of the scale and complexity of real-

time IoT graphs, the model makes use of mini-
batch graph sampling strategies like Graphs AGE
or neighbor sampling, to minimize the
computational overhead in the course of training.
The full graph is not processed and instead of that
they sample localized sub graphs with the focus on
target nodes dynamically, which enables them to
train efficient edge or fog nodes which have limited
resources.

Besides that, in order to deal with temporal
evolution, we partition the data into sliding
temporal windows, with each window reflecting a
temporal snapshot of the graph. Does it
compromise the evolving patterns or make
navigation possible and facilitate online training,
and ongoing learning? The answer is that temporal
windowing does both. At every iteration, the
model gets trained using sequences of temporal
subgraphs, which allow the detection not only of
instantaneous anomalous events but also long-
term behavioral changes.

A combination of these training and optimization
can make the proposed model robust, adaptive, as
well as scalable in terms of being able to learn well
and efficiently using sparse data, maintaining
structural relationships and can be run within the
constraints of real-time requirements as needed in
applications involving IoT.

Input
time-evolving loT graphs
Small set of labeled nolsr/edges

Large set of unlabeled data

!

Graph Neural Network Module
Semi-supervised learning
Neighborhood aggregation/lab Ipropagation

l

Loss Computation
Classification loss
Structural regularizatiion
L=Les+ ALstr

!

g A
Mini-Batch Graph Sampling
Subgraph generation with GraphSAGE
temporal window slicing

l

Output
Trained model for real-time
anomaly detection
| node/edge-level classification |

Figure 2. Training and Optimization Pipeline of the Proposed Semi-Supervised Graph-Based Anomaly
Detection Framework

45

Electronics, Communications, and Computing Summit | Apr - Jun 2025



Andrés Rivera et al / Graph-Based Machine Learning for Anomaly Detection in [oT Security

4. Experimental Setup

To assess the performance and upper-bound
scalability of the suggested graph-based anomaly
detection framework, we carried out experiments
on three famous benchmark datasets namely
TON_IOT, BoT-IOT, and IoT-23. The datasets cover
a wide variety of IoT setups, kinds of attacks, as
well as traffic modalities, thus they will serve as
good models to validate. TON_IoT dataset provides
real-world-looking telemetry and network flow
traces produced by industrial-style IoT attacks and
network flow traces, and BoT-IoT involves several
DDoS, reconnaissance, and information theft
attacks simulated in a smart home testbed. The
Stratosphere Lab maintains [oT-23 which contains
labeled malware traffic captures gathered on a
variety of [oT devices that have been infected with
real-world botnets. The preprocessing of the data
came into play prior to feeding to the graph model
to make it consistent and of good quality. These
involved discarding noise, i.e. discarding corrupt
or irrelevant records, normalizing features such as
scaling feature values to be of about the same scale

oise Remo|

across attributes, and instantiating graphs, in
which communication events were projected into
evolving graph representations, with temporal
ordering and dependencies represented. To
evaluate, several performance measurements were
utilised in order to thoroughly evaluate the model.
This was comprised by accuracy, precision, recall,
and F1-score which gives some insight into how
well the model can correctly detect anomalies with
a low number of false alarms. Also the Areas Under
the Receiver Operating Characteristic Curve (AUC-
ROC) was calculated to assess the stability of the
model in establishing decision thresholds in
different conditions. In addition to the predictive
performance, other criteria were taken: the
inference time and memory consumption to check
whether the model can be deployed to edge
devices with limited processing resources. The
above evaluations statistically prove the potential
of the presented framework to provide precise,
low-latency, and cost-effective anomaly detection
on heterogeneous IoT environments.

Graph Inst

Model Inpu

Normlztn

Figure 3. Experimental Pipeline from Data Preprocessing to Graph-Based Inference

Table 2. Overview of IoT Datasets Used for Experimental Evaluation

Dataset | Source Environment Attack Types Data Types

TON_IoT | UNSW Industrial IoT DDoS, Injection, Backdoor, | Telemetry +
Canberra Reconnaissance Network Flows

BoT-IoT | UNSW Smart Home /| DDoS, Port Scans, Theft, | Network Traffic +
Canberra Testbed Reconnaissance Flow Stats

[oT-23 Stratosphere Real-World Device | Botnet-infected traffic (Mirai, | Labeled PCAPs and
Lab Traffic Torii, etc.) Metadata

5. RESULTS AND DISCUSSION

The experimental

proves

the high-

Convolutional Neural Networks (CNN) on all the
benchmark datasets (TON_IoT, BoT-IoT, and IoT-

performance of the offered graph-based approach
to anomaly detection over the classical machine
learning and deep learning models. In particular,
Graph Neural Network (GNN) architecture has
performed better compared to the Support Vector
Machines (SVM), Random Forests (RF), and

Electronics, Communications, and Computing Summit | Apr -

23). The GNN model provided an average accuracy
of more than 96 percent accuracy, not to mention
that the F1-scores always scored above 0.94, which
indicates that the model is quite confident in
regards to identifying known and even zero-day
attacks. Such performance can be mostly explained
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by the use of graph-based representation of IoT
network, which is capable of capturing the spatial
and contextual dependencies between devices, and
can not be efficiently used by flat-featured
classifiers. Temporal learning integration also

SVM

GNN

allowed the model to detect anomalous patterns
that would change with time and hence it was
especially successful against long-term, stealthy
attacks that would be ignored by snapshot-based
models.

Random Forest

CNN

Figure 4. Accuracy Comparison of GNN-Based Model against Traditional Classifiers on loT Datasets

Also, the system showed good applicability into the
resource-limited environment like the edge and
fog computing layers. The framework has been
confirmed to be real-time responsive, wherein
inference latency could not exceed 100
milliseconds even at the edge nodes with less
powerful equipment. ABlation study was
implemented where the effect of various
architectural elements was compared. The Graph
Attention Networks (GATs) was compared with
Graph Convolutional Networks (GCNs), where it
was found that GATs performed better in the
highly dynamic networks compared with GCNs as

in highly dynamic networks there were many
neighboring nodes with different importance,
which could be assigned by GATs. Further, the
detection accuracy was highly reduced when the
temporal embedding module was removed,
indicating the significance of time dependency
modeling in the IoT traffic. All in all, these results
show indeed that the ensemble of spatial,
temporal, and attention-based, graph learning
techniques represents an effective and scalable
approach to anomaly detection in heterogeneous
[oT ecosystems.

Table 3. Performance Comparison of GNN and Baseline Models for Anomaly Detection in loT Networks

Model Average F1-Score Inference Zero-Day

Accuracy (%) Latency (ms) Detection
Capability

Graph Neural Network | 96.3 0.94 92 High

(GNN)

Convolutional Neural | 89.1 0.88 130 Moderate

Network (CNN)

Random Forest (RF) 86.2 0.85 110 Low

Support Vector | 83.5 0.82 125 Low

Machine (SVM)

6. CONCLUSION AND FUTURE WORK the dynamic, heterogeneous, and large-scale

The proposed research is a graph-based machine
learning framework that is new and capable of
detecting anomalies in loT security, and because of

47

nature of contemporary loT environments, the
challenges of implementing this technology are
increasingly high. Being able to model the device
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interactions in terms of graph evolving in time and
utilizing the properties of Graph Neural Networks
(GNNs), temporal learning modules, and the power
of the attention mechanism, the proposed model is
able to capture a broad range of both spatial and
behavioral dependencies that cannot easily be
captured by more classical detection systems. This
framework has been tested in benchmark datasets
such as TON_IoT, BoT-IoT, and IoT-23 and it
continuously yielded the best results in detection
accuracy the level of false-positives, and real-time
responsiveness when compared to conventional
machine learning algorithms and models based on
CNNs. Besides, being lightweight and featuring a
low level of latency of inference, it can be used in
edge and fog computing systems, providing
capabilities to respond to threats in time in such
distributed systems. In future, the aim will be to
gain further scalability and privacy improvement
using federated graph learning; allowing
decentralized devices to train securely without
exchanging raw data. Moreover, we would like to
incorporate Internet continuous training systems,
which will respond to changing threats without re-
training afresh. Lastly, to augment trust and
transparency in critical [oT applications, we intend
to investigate explainable GNN models that give
interpretable insights into anomalies, enable
forensic analysis and actionable intelligent that can
respond to the presented threats. The given work
forms the basis of the next generation smart
security systems that meet the requirements of
complex IoT systems.
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