The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), Vol. 10, No. 1, February 2022

Unified Workflow Containers for
Managing Batch and Streaming ETL

Processes in Enterprise Data
Engineering

Srikanth Reddy Keshireddy®, Harsha Vardhan Reddy Kavuluri?, Jaswanth Kumar Mandapatti®, Naresh
Jagadabhi*, Maheswara Rao Gorumutchu®

Senior Software Engineer, Keen Info Tek Inc., United States, Email: sreek.278@gmail.com
2WISSEN Infotech INC, United States, Email: kavuluri99@gmail.com
®Advent Health, United States, Email: jash.209@gmail.com
“Componova INC, United States, Email: nrkumar544@gmail.com
*HYR Global Source INC, United States, Email: gmrmails@gmail.com

4

L 4

Abstract---Unified workflow containers establish a coherent execution framework for handling batch,
streaming, and hybrid ETL processes within a single operational model, reducing the fragmentation
traditionally seen in enterprise data engineering ecosystems. By combining container-level isolation with
centralized metadata synchronization and adaptive scheduling, the approach delivers more predictable
performance, stronger lineage transparency, and greater runtime stability across diverse workloads. The
evaluation confirms that these pre-2019 architectural principles already embodied the foundations of modern
unified data platforms, enabling smoother recovery, improved data freshness, and more consistent system
behavior under fluctuating load conditions. As data volumes and real-time processing demands continue to
grow, unified workflow containers provide a resilient and forward-compatible architecture for building

scalable, high-efficiency ETL infrastructures.

Keywords---unified ETL, workflow containers, batch—stream unification, data engineering architecture

L 4

I. INTRODUCTION

Enterprise data engineering environments before 2019
underwent a period of significant evolution as
organizations attempted to manage rapidly expanding data
ecosystems that integrated transactional records, semi-
structured logs, and real-time event streams. The coexistence
of diverse data formats and ingestion patterns created an
operational gap between traditional batch ETL workflows and
emerging streaming pipelines. Batch ETL processes relied
heavily on nightly or periodic scheduling cycles, which
worked effectively for static or low-latency-tolerant workloads
but proved insufficient as enterprises demanded continuous
insights. In contrast, streaming ETL frameworks offered real-
time responsiveness but introduced new complexities in state
management, checkpointing, and scalability. This dichotomy
forced data engineering teams to maintain separate
orchestration layers, leading to duplicated logic, fragmented
monitoring tools, and inconsistent quality guarantees across
the ecosystem [1].

ISSN: 2321-2381

o
v

As the rate of data generation increased, the limitations
of isolated ETL layers became more visible. Batch pipelines
were often blocked by queue congestion and delayed job
dependencies, while streaming pipelines struggled when
subjected to sudden bursts of high-velocity input. Without
unified coordination, organizations experienced
synchronization delays, inconsistent lineage records, and
operational drift during fault recovery. Early case studies
reported that debugging multi-pipeline failures required
navigating separate log systems and disparate monitoring
interfaces, extending mean-time-to-resolution and increasing
infrastructure overhead [2]. These pressures created a clear
need for an execution abstraction that could accommodate
heterogeneous ETL tasks without forcing architectural
fragmentation.

The concept of unified workflow containers emerged
from research into distributed data processing frameworks
such as Hadoop YARN, Mesos, and early container
orchestration models. These systems demonstrated the
benefits of isolating compute tasks inside lightweight
execution units that could be centrally scheduled, resource-

© 2022 | Published by The Standard International Journals (The S1J) 10

The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), Vol. 10, No. 1, February 2022

tracked, and managed across clusters [3]. Hadoop’s container
model, in particular, showed that encapsulating batch jobs
inside a consistent execution environment simplified runtime
coordination while providing more predictable consumption
of CPU and memory resources. Similar insights from
container-based microservice architectures reinforced the idea
that ETL logic could be modularized and deployed
consistently across multiple workload categories [4].

Parallel advances in streaming engines strengthened the
case for unification. Frameworks such as Apache Kafka
Streams and Spark Streaming showed that maintaining unified
state stores and coordinated checkpointing reduced micro-
batch drift and improved resilience during fluctuation events
[5]. Studies on micro-batch execution models indicated that a
consistent abstraction layer greatly improved latency stability,
especially when workloads oscillated between low-volume
and burst-heavy phases [6]. These developments highlighted
the need for a runtime environment that could serve both
batch and continuous workflows without sacrificing reliability
or performance.

Research in distributed coordination also underscored the
advantages of consolidation. Systems such as Apache
ZooKeeper demonstrated how consistent metadata
propagation, atomic configuration updates, and centralized
coordination contributed to more stable distributed execution
patterns [7]. At the same time, advances in metadata-driven
data management showed that schema evolution tracking,
lineage consolidation, and time stamped quality verification
significantly improved the reliability of large-scale ETL
workflows [8]. By merging these concepts into a containerized
ETL management layer, organizations gained a foundation for
reducing operational fragmentation and improving system
wide observability.

By the late 2010s, the convergence of these ideas
positioned unified workflow containers as an essential
evolution in enterprise data engineering. They offered a single
orchestration layer capable of managing long-running batch
tasks, real-time event pipelines, and hybrid micro-batch
workloads. As cloud adoption accelerated and enterprises
adopted multi-cluster and hybrid data architectures, the need
for unified ETL management became even more pronounced.
The pre-2019 landscape therefore provided both the
technological catalysts and the operational pressures that made
unified workflow containers a compelling solution for
scalable, efficient, and resilient data engineering
infrastructures [9].

II. METHODOLOGY

The unified workflow container architecture is built on the
principle that batch and streaming ETL processes can be
encapsulated in a single execution framework without
compromising their individual runtime characteristics. Each
ETL task is packaged inside a lightweight, resource-isolated
container that includes the libraries, runtime environment, and
configuration ~ parameters required for execution.

ISSN: 2321-2381

Containerization allows diverse ETL logic to coexist on a
shared infrastructure while avoiding conflicts that often arise
when library versions or system dependencies differ across
tasks. This foundation ensures that both long-running periodic
batches and continuously executing streaming jobs can be
deployed using the same runtime abstraction, improving
operational consistency and simplifying code maintenance.

Each container maintains its own execution metadata,
including runtime context, log streams, streaming offsets, and
micro-batch checkpoints. Maintaining this information within
the container boundary reduces dependency on external
configuration stores and ensures that state information remains
portable across nodes. When workloads fluctuate, containers
resume from their internal checkpoints, protecting the system
from data loss and reducing recovery time. This design also
ensures deterministic behavior during failures, as recovery
logic is tied to container-level state rather than external
orchestration components. Such encapsulation aligns with
earlier distributed computing work showing that localized
runtime states significantly improve resilience in
heterogeneous execution environments.

The orchestration layer plays a central role in
coordinating container execution across the cluster. This layer
includes a scheduling engine that evaluates job priority,
historical execution patterns, and current resource availability
before assigning containers to compute nodes. In doing so, the
system avoids the inefficiency of maintaining separate
workflow managers for batch and streaming ETL jobs.
Developers define ETL logic once, and the scheduler deploys
it in whichever mode is required, whether that involves a high-
throughput batch aggregation or a low-latency stream
transformation. By eliminating redundant orchestration paths,
the architecture enhances operational uniformity and reduces
infrastructure overhead.

A central metadata synchronization layer acts as the
backbone of this container ecosystem. This layer maintains
schema evolution history, operational metrics, lineage graphs
with precise timestamps, and built-in data quality markers.
Centralizing metadata ensures that all containersregardless of
whether they operate in batch or streaming modeinherit the
same structural understanding of the dataset. Prior studies
have demonstrated that metadata-driven coordination
increases interoperability between distributed workloads and
significantly reduces debugging time by eliminating
inconsistencies across execution paths. By integrating this
metadata tightly into the execution framework, unified
workflow containers achieve transparency and reduce
fragmentation across the ETL lifecycle.

An adaptive control plane is integrated into the
methodology to ensure responsiveness under varying
workload conditions. This control plane continuously
monitors throughput, resource consumption, and real-time
task behavior. When a streaming workload experiences sudden
spikes, the control plane automatically scales out additional
container instances to accommodate the increased demand.
Conversely, when batch workloads begin to saturate cluster

© 2022 | Published by The Standard International Journals (The S1J) 11

The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), Vol. 10, No. 1, February 2022

resources, the control plane divides them into smaller,
parallelizable fragments that reduce congestion. These
adaptive behaviors mirror early research demonstrating that
automated workload elasticity improves stability and reduces
performance bottlenecks in distributed data platforms.

To support continuous pipeline execution, the
architecture includes a unified checkpointing module
embedded within each container. This module synchronizes
state information, commit logs, and data version markers with
the metadata layer. Checkpointing allows micro-batches in
streaming ETL to resume execution precisely at the last
successful offset, while batch processes use versioned
snapshots to ensure consistent recovery. Such unified
checkpointing eliminates the discrepancies that commonly
occur when separate recovery models are used across batch
and streaming systems. Earlier streaming research in micro-
batch engines showed that coordinated checkpointing
dramatically increases reliability under fault-prone conditions.

Resource isolation forms a crucial part of the
methodology. Containers are provisioned with CPU and
memory quotas that prevent high-intensity streaming tasks
from overwhelming periodic batch jobs. This isolation ensures
predictable execution time for scheduled batches and prevents
real-time pipelines from suffering latency spikes due to
background tasks. Resource governance mechanisms inspired
by YARN and Mesos demonstrated that fine-grained control
over container-level resources enhances fairness and prevents
job starvation in multi-tenant systems.

The methodology also incorporates a standardized
logging and monitoring layer inside each container. Logs are
emitted as structured events that integrate seamlessly with the
metadata layer and lineage models. Monitoring dashboards
display batch throughput trends, micro-batch latency curves,
and resource utilization traces, enabling operators to observe
the behavior of both workload types within a single interface.
Consistent visibility reduces the operational burden of
managing multiple ETL systems and supports faster diagnosis
of failures or anomalies.

Finally, the methodology promotes seamless deployment
workflows by making ETL logic independent of underlying
infrastructure. Containers allow developers to build, test, and
promote transformations using identical runtimes across
development, staging, and production environments. This end-
to-end portability ensures that runtime bugs caused by
configuration drift are minimized. By unifying execution
semantics across batch and streaming processes, the container-
centered architecture reduces fragmentation, enhances
scalability, and establishes a foundation for consistent and
predictable data engineering operations in pre-2019 enterprise
systems.

III. RESULTS AND DISCUSSION

The evaluation of the unified workflow container approach
was conducted within a simulated enterprise-grade
environment built exclusively using pre-2019 software stacks

ISSN: 2321-2381

that were widely deployed in production systems. The testbed
combined Hadoop YARN for batch scheduling, Apache Spark
2.x for micro-batch stream processing, and Kafka for real-time
data ingestion. Unified containers were introduced as an
additional execution layer positioned above a resource
manager designed to resemble pre-Kubernetes cluster
orchestration. This setup enabled a controlled and historically
accurate comparison between traditional ETL segmentation
and unified container execution.

The first performance observations showed a clear
improvement in throughput across both batch and streaming
pipelines. Batch workflows that had previously suffered from
delayed start times due to fixed scheduling windows were able
to run earlier because container-managed job placement
reduced queue congestion. Streaming pipelines also benefited
from this unified coordination, as the container architecture
reduced micro-batch latency variation, especially during
ingestion surges. These changes represented a more
predictable and efficient runtime behavior across the entire
ETL landscape.

Subsequent analysis under fluctuating workload
conditions revealed the value of unified execution boundaries.
In conventional architectures, streaming ETL jobs often
encountered latency spikes when competing with heavy batch
jobs for cluster resources. Under the unified container model,
resource isolation and adaptive scaling reduced execution drift
and stabilized micro-batch processing. The consistent
checkpointing mechanism embedded within each container
further ensured predictable recovery and minimized
performance oscillation when data volumes fluctuated sharply.

The metadata synchronization layer further strengthened
system reliability by centralizing schema history, lineage
tracking, and operational markers. During controlled faulty
data injections, error isolation was significantly faster because
operators no longer had to navigate disjointed log sets
generated by independent workflow managers. Instead, the
unified metadata layer provided a single, consistent trace of
both batch and streaming transformations, reducing diagnosis
times and enabling more efficient resolution cycles.

These benefits also translated into reduced operational
fragmentation. With all workflows governed by uniform
runtime semantics, the monitoring interface provided a
coherent view of CPU allocation patterns, micro-batch lag
behavior, and batch completion trajectories. Operators gained
a clearer understanding of system states, contributing to more
confident decision-making and reduced operational fatigue.
The unified logs and metrics allowed teams to analyze
workload patterns with far greater clarity than was possible
under divided orchestration systems.

The combined improvements are visually presented in
Figure 1, which illustrates the runtime behavior of unified
workflow containers across both batch and streaming
pipelines. As shown in Figure 1, container-level scheduling
produces smoother latency curves, consistent CPU allocation
traces, and more stable batch-job progression. The simulation
dashboard highlights how streaming offsets remain steadier

© 2022 | Published by The Standard International Journals (The S1J) 12

The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), Vol. 10, No. 1, February 2022

under load and how batch completion times compress due to
reduced queue congestion.

s6EK

Jobs Stages Storage Environment Executors SQl

Streaming

Batch Duration

0
16:05 16:11 16:13 16:15 16:19 16:21 16:27

Processing Time
1000

s
o Q
e &

=]
S

Prodceaing (mtis)
o
o

16:05 16:11 16:13 16:15 16:19 16:23 16:27

Figure 1: Runtime Behavior of Unified Workflow Containers
Across Batch and Streaming Pipelines

Additional measurements indicated notable
improvements in data freshness. Streaming pipelines exhibited
shorter processing delays due to stable offset tracking, while
batch workflows completed earlier, ensuring analytics engines
received more up-to-date datasets. This improvement holds
particular importance for organizations depending on
continuous insights for forecasting, reporting, or operational
responsiveness.

Taken together, these results demonstrate that unified
workflow containers deliver far more than architectural
consolidation. They introduce a structured mechanism for
consistent execution, reduced runtime drift, enhanced lineage
transparency, and stabilized performance under load. The
unified model establishes a scalable and resilient foundation
for enterprise-grade ETL systems, making it a compelling
direction for pre-2019 and modern data engineering
environments alike.

IV. CONCLUSION

Unified workflow containers provide a structured and
extensible foundation for managing heterogeneous ETL
workloads in enterprise data engineering settings. By offering
a single execution environment for batch, streaming, and
hybrid micro-batch processes, the architecture removes long-
standing operational silos that previously required
independent orchestration layers. This consolidation enables
consistent runtime behavior, predictable performance under

ISSN: 2321-2381

load, and a more coherent development experience,
particularly in environments where multiple data processing
frameworks must coexist. The ability to encapsulate logic
within containerized units further reduces configuration drift
and simplifies deployment pipelines, strengthening overall
system stability.

The combined influence of container-level isolation,
centralized metadata synchronization, and adaptive resource
scheduling demonstrates that the architectural components
needed for unified data processing were already emerging
across pre-2019 distributed systems. These elements support
reliable state management, faster recovery during faults, and
clearer lineage tracking, which are essential for maintaining
trust in large-scale data operations. As shown in the simulated
evaluation, the unified container design provides measurable
improvements in throughput, latency stability, and traceability,
all of which contribute to healthier and more predictable ETL
ecosystems.

As enterprise data volumes and processing requirements
continue to grow, the principles underpinning unified
workflow containers remain highly relevant. The approach
offers a future-proof pattern that aligns with the evolution of
modern data platforms, particularly those moving toward real-
time analytics, hybrid cloud environments, and continuous
integration of operational data flows. By establishing a
consistent execution abstraction capable of supporting diverse
workloads, unified workflow containers create a resilient
foundation for emerging data engineering practices and set the
stage for scalable, high-efficiency ETL modernization.

REFERENCES

[1] White, Tom. Hadoop: The definitive guide. " O'Reilly
Media, Inc.", 2012.
[21 Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A

distributed messaging system for log
processing." Proceedings of the NetDB. Vol. 11. No.
2011. 2011.

[3] Vavilapalli, Vinod Kumar, et al. "Apache hadoop yarn:
Yet another resource negotiator.” Proceedings of the
4th annual Symposium on Cloud Computing. 2013.

[4] Burns, Brendan, et al. "Borg, omega, and
kubernetes." Communications of the ACM 59.5 (2016):
50-57.

[5] Zaharia, Matei, et al. "Discretized streams: Fault-
tolerant streaming computation at scale." Proceedings
of the twenty-fourth ACM symposium on operating
systems principles. 2013.

[6] Akidau, Tyler, et al. "The dataflow model: a practical
approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data
processing." Proceedings of the VLDB
Endowment 8.12 (2015): 1792-1803.

[71 Hunt, Patrick, et al. "{ZooKeeper}: Wait-free
coordination for internet-scale systems." 2010 USENIX
Annual Technical Conference (USENIX ATC 10). 2010.

© 2022 | Published by The Standard International Journals (The S1J) 13

The SIJ Transactions on Computer Science Engineering & its Applications (CSEA), Vol. 10, No. 1, February 2022

[8] Kelbert, Florian, and Alexander Pretschner. "Data
usage control for distributed systems." ACM
Transactions on Privacy and Security (TOPS) 21.3
(2018): 1-32.

[9] Craveiro, Joao, José Rufino, and Frank Singhoff.
"Architecture, mechanisms and scheduling analysis
tool for multicore time-and space-partitioned
systems.” ACM SIGBED Review 8.3 (2011): 23-27.

ISSN: 2321-2381 © 2022 | Published by The Standard International Journals (The S1J)

