
47| International Journal of communication and computer Technologies | Jul - Dec 2019 | Vol 7 | Issue 2

Research Article

Integration of Low Code Workflow Builders with
Enterprise ETL Engines for Unified Data
Processing
Srikanth Reddy Keshireddy1, Harsha Vardhan Reddy Kavuluri2

1Senior Software Engineer, Keen Info Tek Inc., United States, Email: sreek.278@gmail.com
2WISSEN Infotech INC, United States, Email: kavuluri99@gmail.com

Received: 13.06.19, Revised: 19.07.19, Accepted: 25.08.19

ABSTRACT
The integration of low code workflow builders with enterprise ETL engines provides a unified
framework for constructing scalable, maintainable, and high-performance data pipelines. By
combining visual orchestration with deterministic distributed execution, this model streamlines
pipeline development, enforces consistent transformation logic, and enhances governance through
centralized metadata and lineage tracking. The integrated architecture improves throughput,
reduces operational complexity, and enables automated recovery from failures, resulting in
resilient and transparent dataflows suitable for diverse analytical and operational workloads. This
approach empowers organizations to modernize legacy ETL environments while achieving greater
agility, reliability, and processing efficiency.

Keywords: low code orchestration, ETL integration, unified pipelines

1. INTRODUCTION

Enterprise data environments have historically

relied on complex ETL engines to manage

extraction, transformation, and loading across
heterogeneous operational and analytical

systems. As organizations expanded their data
footprints across distributed storage, streaming

platforms, and multi-tiered data warehouses,
traditional ETL pipelines became increasingly

difficult to modify, scale, and maintain [1]. Low

code workflow builders emerged as a response
to these challenges, offering visual development,

reusable components, and metadata-driven
orchestration that significantly reduced

engineering overhead [2]. When combined with

established ETL engines, these workflow builders
provide a unified approach that simplifies

pipeline creation while preserving the robustness
and performance guarantees of enterprise-grade

data processing systems [3].
A major factor driving the adoption of low code

workflow systems is the growing need for rapid

iteration in data integration processes. Classical
ETL frameworks often require extensive scripting

and manual configuration to incorporate new
data sources or implement changes in

transformation logic. Low code builders, in

contrast, abstract these complexities through
drag-and-drop components, template-based

transformations, and declarative workflow
definitions [4]. This abstraction enables data

engineers, analysts, and application teams to
collaborate more effectively, reducing

development time and lowering the dependency
on specialized ETL scripting expertise [5].

Integrating these capabilities with enterprise ETL
engines ensures that convenience does not come

at the cost of scalability or correctness.

Another limitation of traditional ETL pipelines is
the fragmentation of logic across multiple tools

and scripts, resulting in poor governance,
duplicated transformations, and inconsistent data

semantics. Low code workflow systems help

centralize workflow definitions, metadata
specifications, and operational rules into a

unified orchestration layer [6]. When this
centralization is integrated with ETL engines such

as Spark, Hive-based transformations, or
distributed MapReduce tasks, enterprises benefit

from both declarative workflow construction and

industrial-strength execution backends [7]. This
integration supports more consistent dataflows,

reduces operational drift, and enables
organizations to enforce global transformation

policies across environments.

The evolution of distributed data platforms
introduced additional challenges around

scheduling, dependency management, and multi-
stage pipeline coordination. Low code workflow

builders often include built-in support for

dependency graphs, conditional logic, retry
mechanisms, and multi-branch execution paths.

prava
Textbox
ISSN 2278-9723

Srikanth Reddy Keshireddy et al / Integration of Low Code Workflow Builders with Enterprise ETL

Engines for Unified Data Processing

48| International Journal of communication and computer Technologies | Jul - Dec 2019 | Vol 7 | Issue 2

When coupled with resilient ETL engines that

support deterministic processing, fault tolerance,
and parallel execution, enterprises gain the

ability to automate complex multi-source
dataflows with high reliability [8]. This

combination enhances operational efficiency by

reducing manual intervention, improving
workflow visibility, and minimizing the risk of

inconsistent pipeline states.
Metadata, lineage, and reproducibility are also

central to modern data engineering. Low code
orchestration tools typically expose metadata

interfaces that track schema evolution,

transformation history, and runtime states.
Integrating these metadata capabilities with

enterprise ETL engines enables end-to-end
lineage tracing, auditability, and compliance

reporting without requiring custom-built tracking

systems [9]. This unified metadata backbone
strengthens governance, reduces ambiguity in

transformation logic, and supports accurate
impact analysis when upstream schema or logic

changes occur.
Ultimately, integrating low code workflow

builders with enterprise ETL engines offers a

balanced approach that preserves the
performance, reliability, and scalability of

classical data processing systems while
introducing agility and ease of use through visual

orchestration. This unified model allows

enterprises to modernize legacy ETL
infrastructure without abandoning the proven

execution strengths of distributed batch and
streaming engines. By aligning visual workflow

design with deterministic ETL execution,

organizations gain a powerful framework for
constructing maintainable, scalable, and high-

quality data pipelines that serve both operational
and analytical workloads effectively.

2. Low Code Workflow Builders for Enterprise
Data Orchestration

Low code workflow builders provide an

abstraction layer that simplifies the construction
and orchestration of complex data pipelines by

replacing handwritten scripts with visual,
declarative components. These systems enable

users to compose workflows using drag-and-drop

operators, prebuilt transformation modules, and
graph-based execution diagrams. By eliminating

the need for extensive procedural coding, low
code builders accelerate development cycles and

make data pipeline creation accessible to a

broader segment of technical teams. This shift
reduces the operational burden traditionally

associated with ETL scripting, dependency
management, and multistage orchestration,

while still supporting the sophistication required

in enterprise environments.
One of the defining strengths of low code

workflow builders is their alignment with
metadata-driven orchestration. Instead of relying

on hardcoded logic scattered across scripts,

these platforms maintain centralized metadata
repositories that store schema definitions,

transformation rules, data source configurations,
and execution parameters. When a workflow

component is added or updated, metadata
services ensure that the change propagates

throughout the pipeline consistently. This

prevents semantic drift, minimizes conflicting
transformations, and reinforces structural

coherence across distributed dataflows.
Metadata-driven execution also enables dynamic

pipeline validation, allowing the system to detect

schema mismatches or invalid configuration
states before execution begins.

Low code systems also support modularity
through reusable pipeline components. Operators

for ingestion, cleansing, transformation,
enrichment, or routing can be created once and

reused across multiple workflows, ensuring

uniformity in implementation. These reusable
modules encapsulate domain logicsuch as

standardization rules, type conversions, or
deduplication patternswithin a version-controlled

component library. This not only reduces

development time but also enforces strict
consistency across teams and projects. When

integrated with enterprise ETL engines, these
modules translate into stable, deterministic

transformations executed at scale.

Another major advantage lies in the automation
capabilities embedded within low code builders.

Workflow engines often include built-in
scheduling, failure detection, retry logic,

conditional branching, and event-triggered
execution. These features eliminate the need for

manual orchestration scripts and reduce

operational complexity during pipeline execution.
Automated orchestration ensures that multistage

pipelines execute in the correct sequence, handle
error states gracefully, and recover reliably from

transient failures. Coupling these orchestration

features with robust ETL engines strengthens
end-to-end reliability, particularly in

environments with high data volume or
variability.

Low code workflow systems improve operational
transparency through visual monitoring and

pipeline observability. Graphical dashboards

illustrate the execution status of each stage,
identify bottlenecks, highlight failed operators,

and present lineage traces that map data

Srikanth Reddy Keshireddy et al / Integration of Low Code Workflow Builders with Enterprise ETL

Engines for Unified Data Processing

49| International Journal of communication and computer Technologies | Jul - Dec 2019 | Vol 7 | Issue 2

movement through the system. This visual

observability is particularly valuable in distributed
environments, where pipeline failures can be

difficult to diagnose due to the involvement of
multiple execution nodes, message queues, and

storage layers. Simplifying execution visibility

reduces troubleshooting time and helps teams
rapidly isolate and remediate errors.

The ability of low code builders to integrate with
diverse data systems further enhances their

orchestration capabilities. Most platforms support
connectors for relational databases, distributed

file systems, message brokers, object stores, and

REST or SOAP APIs. These connectors provide
standardized ingestion and delivery frameworks,

ensuring that pipelines can interface reliably with
both legacy and modern systems. When these

connectors feed into enterprise ETL engines,

workflows benefit from both ease of
configuration and the throughput guarantees of

established distributed processing engines.
Low code workflow builders also contribute to

governance and compliance by embedding
validation, access control, and audit mechanisms

into the orchestration layer. Role-based

permissions determine who can modify
workflows, adjust parameters, or trigger

executions. Change logs, versioning systems,
and lineage records support auditability and

regulatory compliance, ensuring that pipeline

modifications can be traced and verified. When
combined with ETL engines that already support

deterministic computation and consistent
execution, these governance features create a

unified operational framework suitable for

mission-critical enterprise data processes.
Finally, low code orchestration platforms enable

hybrid processing models that combine batch,
micro-batch, and stream processing within a

single unified environment. By visually
configuring different execution paths and binding

them to appropriate ETL backends, data

engineers can construct pipelines that integrate
historical and real-time data seamlessly. This

unification supports advanced analytical
scenarios such as incremental aggregations,

stateful streaming transformations, and mixed-

mode data synchronization. The synergy
between low code workflows and enterprise ETL

engines thus transforms the pipeline ecosystem
into a flexible, scalable, and maintainable

architecture capable of serving diverse analytical
and operational needs.

3. ETL Engine Integration Architecture

Integrating low code workflow builders with

enterprise ETL engines requires a unified

architectural framework that aligns visual

orchestration with scalable, high-performance
data processing. At the core of this architecture

is the workflow builder, which acts as the
orchestration and control interface for pipeline

configuration, execution, and monitoring. The

workflow builder translates visual workflow
definitionscomprising ingestion tasks,

transformation steps, routing decisions, and
validation checksinto executable plans that

downstream ETL engines can interpret. This
decoupling of design from execution enables

non-specialist users to construct sophisticated

pipelines while ensuring that processing remains
anchored on proven ETL technologies capable of

distributed computation.
The execution flow is mediated through a

transformation layer, which serves as the

intermediary between the low code orchestration
environment and the underlying ETL engine. This

layer interprets workflow definitions into
standardized transformation specifications, such

as SQL-based logic, rule-based operations, or
map–reduce style functions. It ensures that logic

defined visually is accurately converted into

deterministic operations compatible with large-
scale distributed engines. This architectural

separation maintains consistency by ensuring
that the expressive simplicity of low code

workflows does not compromise the precision or

reproducibility required for enterprise-grade
transformations.

The distributed ETL engine forms the execution
backbone, responsible for actual data movement,

transformation, and computation across clusters.

Engines such as Spark, Hive-based ETL
frameworks, or MapReduce runtimes execute the

transformation specifications produced by the
workflow builder. Within this architecture, the

ETL engine handles parallelization, fault
tolerance, checkpointing, and workload

distribution across nodes. The integration

architecture ensures that the ETL engine receives
well-structured execution plans, enabling it to

leverage features such as lazy evaluation, in-
memory processing, and deterministic task

scheduling. This alignment allows organizations

to combine intuitive workflow construction with
the robustness and performance characteristics

of distributed processing.
Metadata governance plays a crucial role in

harmonizing low code orchestration with ETL
execution. A centralized metadata service stores

schema definitions, lineage information,

operational parameters, data quality rules, and
transformation semantics. During integration, the

workflow builder queries metadata repositories

Srikanth Reddy Keshireddy et al / Integration of Low Code Workflow Builders with Enterprise ETL

Engines for Unified Data Processing

50| International Journal of communication and computer Technologies | Jul - Dec 2019 | Vol 7 | Issue 2

to validate schemas, enforce data constraints,

and ensure consistency in pipeline logic.
Meanwhile, the ETL engine writes back execution

metadataincluding job states, data version
identifiers, and lineage tracesallowing workflow

builders to maintain end-to-end visibility. This

bidirectional metadata synchronization eliminates
semantic drift and supports governance,

auditability, and controlled schema evolution.
Target data stores represent the terminal stage

of the integration architecture, receiving
processed datasets that maintain structural and

semantic coherence across workflows. Whether

the output systems include data warehouses,
distributed file systems, transactional stores, or

message queues, the integration architecture
ensures that ETL outputs adhere to consistency

requirements defined in the orchestration layer.

Because low code workflow builders govern the
sequencing, dependencies, and validation logic,

data written to target stores is guaranteed to
have passed through standardized

transformation and quality control procedures
executed by the ETL engine.

This overall integration flow is illustrated

conceptually in Figure 1 depicts a layered
architecture beginning with the low code

workflow builder and progressing through the
transformation layer, distributed ETL engine,

metadata governance service, and final target

data stores. Directed arrows represent
orchestration commands, scheduling instructions,

transformation dispatching, and state
synchronization between components. This

tiered model demonstrates how visual workflow

design, metadata-driven governance, and
distributed computation form a unified

processing ecosystem capable of supporting
scalable, reliable, and maintainable enterprise

data pipelines.

Figure 1. Unified ETL–Low Code Workflow

Integration Model

4. Unified Processing Behavior and
Performance Implications

Integrating low code workflow builders with
enterprise ETL engines creates a unified

processing environment in which orchestration,
transformation, and execution operate as a

cohesive system rather than as fragmented

components. This integration aligns visual
workflow definitions with deterministic execution

semantics, ensuring that every pipelineregardless
of its complexityfollows consistent processing

rules. By translating visual operators into

structured transformation plans executed by
distributed ETL engines, the architecture

minimizes discrepancies between design intent
and runtime behavior. As a result, dataflows

become predictable, repeatable, and auditable,
reducing the operational risks associated with

ad-hoc scripting and diverse toolchains.

The unified model also brings significant
improvements in execution efficiency. Low code

workflow builders excel at abstracting
orchestration logic, while ETL engines specialize

in distributed computation, parallelism, and fault

tolerance. When combined, these strengths
enable pipelines to benefit from optimized

operator placement, balanced workload
distribution, and accelerated execution through

in-memory processing or multi-node execution
strategies. Automated dependency resolution

and scheduling within the orchestration layer

further decrease idle time and eliminate manual
coordination, allowing data to move through the

system with minimal latency. This improves
overall throughput and reduces bottlenecks that

typically arise in manually assembled pipelines.

Another key performance advantage of the
unified architecture lies in its improved fault-

handling and resiliency. Failures in traditional
pipelines often require manual intervention, as

orchestration logic and transformation logic

reside in different systems with limited insight
into each other’s states. In the integrated model,

low code workflow builders receive detailed
telemetry, checkpoints, lineage records, and job

states directly from ETL engines, enabling
automated retries, rollback actions, and

conditional branch execution without human

involvement. Because ETL engines maintain
deterministic state management, replay

operations remain accurate and consistent,
significantly reducing the recovery time for failed

or partially completed workflows.

Finally, unifying low code workflow builders with
ETL engines enhances long-term maintainability

and adaptability. Organizations can update
business rules, transformation logic, or schema

Srikanth Reddy Keshireddy et al / Integration of Low Code Workflow Builders with Enterprise ETL

Engines for Unified Data Processing

51| International Journal of communication and computer Technologies | Jul - Dec 2019 | Vol 7 | Issue 2

mappings at the workflow layer without

modifying distributed execution code, while still
ensuring that changes propagate safely through

metadata governance and execution backends.
This reduces technical debt, simplifies version

control, and supports iterative development of

pipelines as data requirements evolve.
Performance monitoring and optimization also

become more effective, as both orchestration-
level metrics and engine-level execution statistics

are available within the same operational
interface. Collectively, these capabilities create a

more agile, scalable, and resilient data

processing ecosystem capable of supporting
diverse analytical and operational workloads.

5. CONCLUSION

Integrating low code workflow builders with

enterprise ETL engines establishes a unified and
balanced framework that significantly elevates

the efficiency and reliability of modern data

engineering ecosystems. By coupling intuitive
visual orchestration with the deterministic, large-

scale execution capabilities of established ETL
engines, organizations gain the ability to

construct complex pipelines without the
overhead of manual scripting or fragmented

coordination. This architectural alignment

ensures that transformation logic remains
consistent across environments, enforces schema

discipline, and supports end-to-end lineage
through shared metadata governance. Such

cohesion not only reduces operational risk but

also strengthens compliance, auditability, and
long-term maintainability, making the integration

model highly suitable for evolving enterprise data
landscapes.

The unified processing model also delivers

substantial improvements in performance and
resilience. Low code workflow builders

orchestrate intelligent scheduling, error handling,
and dependency management, while distributed

ETL engines provide the parallelism, fault
tolerance, and recovery guarantees necessary for

stable high-volume processing. Together, these

components create pipelines capable of
withstanding node failures, handling unbalanced

workloads, and adapting to shifting data patterns
without service disruption. Enhanced

observability, automated recovery mechanisms,

and harmonized execution metrics contribute to
a more predictable and tunable operational

environment. Ultimately, this integrated approach
provides a scalable and future-proof foundation

that empowers organizations to meet both
analytical and real-time processing requirements

with greater speed, consistency, and confidence.

REFERENCES
1. Thusoo, Ashish, et al. "Hive: a warehousing

solution over a map-reduce
framework." Proceedings of the VLDB
Endowment 2.2 (2009): 1626-1629.

2. Arivoli, Anbarasu. "Low-Code Platforms for
Enterprise Integration Challenges in
Integrating Legacy Systems with Modern
Applications." Journal ID 9471 (2017): 1297.

3. Dean, Jeffrey, and Sanjay Ghemawat.
"MapReduce: simplified data processing on
large clusters." Communications of the
ACM 51.1 (2008): 107-113.

4. Geyer-Klingeberg, Jerome, et al. "Process
Mining and Robotic Process Automation: A
Perfect Match." BPM
(Dissertation/Demos/Industry) 2196 (2018):
124-131.

5. Aier, Stephan, and Robert Winter.
"Fundamental patterns for enterprise
integration services." Technological
Applications and Advancements in Service
Science, Management, and Engineering. IGI
Global Scientific Publishing, 2012. 35-51.

6. Nicolae, Bogdan, Gabriel Antoniu, and Luc
Bougé. "BlobSeer: Efficient data
management for data-intensive applications
distributed at large-scale." 2010 IEEE
International Symposium on Parallel &
Distributed Processing, Workshops and Phd
Forum (IPDPSW). IEEE, 2010.

7. Zaharia, Matei, et al. "Resilient distributed
datasets: A {Fault-Tolerant} abstraction for
{In-Memory} cluster computing." 9th USENIX
symposium on networked systems design and
implementation (NSDI 12). 2012.

8. Carbone, Paris, et al. "Apache flink: Stream
and batch processing in a single engine." The
Bulletin of the Technical Committee on Data
Engineering 38.4 (2015).

9. Bonnet, Pierre. Enterprise data governance:
Reference and master data management
semantic modeling. John Wiley & Sons, 2013.

